• Title/Summary/Keyword: simultaneous measurement

Search Result 484, Processing Time 0.019 seconds

Efficient Application of Westgard Multi-Rules and Quality Control Implementation Improvement (Westgard Multi-Rules의 효율적 적용과 조치사항의 개선)

  • Jung, Heung Soo;Oh, Youn Jung;Bae, Jin Soo;Baek, Jin Young;Hwang, Bo ra;Shin, Yong Hwan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.1
    • /
    • pp.60-64
    • /
    • 2017
  • Purpose Westgard multi-rules application based on test quality improvement and commercialized international standard has been widely used in quality control. However, it is difficult to applicate the Westgard multi-rules in nuclear medicine in vitro tests due to the larger sample sizes and the simultaneous measurement of quality control material and patient sample. This study investigated the usefulness of Westgard multi-rules application in nuclear medicine in vitro tests. Materials and Methods A total of 282 systematic error multi-rules (22s, 101s) recorded in the samsung medical center computer system from January 2013 to June 2016 along with 117 cases of corrective measure record was analyzed. The Quality control implementation is recorded in Hospital information system were divided into 4 high-level areas including quality control material error, experimental procedural error, Kit lot number management error, and others. To prevent quality control material error, the existing method that each staff used their own method was changed. The staff who in charge of managing the quality control material was designated and daily consumption amount of every test was strictly controlled by one person. To prevent other errors, every test step was standardized so that the entire test procedures are identically implemented. Results The total quality control implementation was 117 cases; As a result, 62 quality control material errors were 62 cases, experimental process errors were 24 cases, Kit lot number control errors were 18 cases, and other errors were 13 cases. The quality control material error was corrected and could be used fresh materials within 2 days after thawing. The cases of systemic error were decreased to causes as quality control material error. The quality control materials were reduced above 10 vials to a monthly average. In addition, these errors of experimental processing and Kit lot number were improved by test standardization. Consequently, the cases of 101s and 22s in systematic error rules decreased at least 2 cases to a monthly average. Conclusion To confirm of systematic error through multi-rules application quickly, it is necessary to base on management of the QC material, target values and standard deviation. Moreover, in the event of a systematic error, it was found important to record measures based on test cause analysis. The experiment results are expected to contribute to internal quality control improvement and prompt and accurate result reporting through error recording and causal analysis based on Westgard multi-rules analysis.

  • PDF

Environmental Damage to Nearby Crops by Hydrogen Fluoride Accident (불화수소 누출사고 사례를 통한 주변 농작물의 환경피해)

  • Kim, Jae-Young;Lee, Eunbyul;Lee, Myeong Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • BACKGROUND: Hydrogen fluoride is one of the 97 accident preparedness substances regulated by the Ministry of Environment (Republic of Korea) and chemical accidents should be managed centrally due to continual occurrence. Especially, hydrogen fluoride has a characteristic of rapid diffusion and very toxic when leaking into the environment. Therefore, it is important to predict the impact range quickly and to evaluate the residual contamination immediately to minimize the human and environmental damages. METHODS AND RESULTS: In order to estimate the accident impact range, the off-site consequence analysis (OCA) was performed to the worst and alternative scenarios. Also, in order to evaluate the residual contamination of hydrogen fluoride in crop, the samples in accident site were collected from 15-divided regions (East direction from accident sites based on the main wind direction), and the concentration was measured by fluoride ($F^-$) ion-selective electrode potentiometer (ISE). As a result of the OCA, the affected distance by the worst scenario was estimated to be >10 km from the accident site and the range by the alternative scenario was estimated to be about 1.9 km. The residual contamination of hydrogen fluoride was highest in the samples near the site of the accident (E-1, 276.82 mg/kg) and tended to decrease as it moved eastward. Meanwhile, the concentrations from SE and NE (4.96~28.98 mg/kg) tended to be lower than the samples near the accident site. As a result, the concentration of hydrogen fluoride was reduced to a low concentration within 2 km from the accident site (<5 mg/kg), and the actual damage range was estimated to be around 2.2 km. Therefore, it is suggested that the results are similar to those of alternative accident scenarios calculated by OCA (about 1.9 km). CONCLUSION: It is difficult to estimate the chemical accident-affecting range/region by the OCA evaluation, because it is not possible to input all physicochemical parameters. However simultaneous measurement of the residual contamination in the environment will be very helpful in determining the diffusion range of actual chemical accident.

Effect of SO2 on the Simultaneous Removal of Mercury and NOx over CuCl2-loaded V2O5-WO3/TiO2 SCR Catalysts (CuCl2가 담지된 V2O5-WO3/TiO2 SCR 촉매에 의한 수은 및 NOx 동시 제거에서 SO2의 영향)

  • Ham, Sung-Won
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2022
  • CuCl2-loaded V2O5-WO3/TiO2 catalyst showed excellent activity in the catalytic oxidation of elemental mercury to oxidized mercury even under SCR condition in the presence of NH3, which is well known to significantly inhibit the oxidation activity of elemental mercury by HCl. Moreover, it was confirmed that, when SO2 was present in the reaction gas together with HCl, excellent elemental mercury oxidation activity was maintained even though CuCl2 supported on the catalyst surface was converted to CuSO4. This is thought to be because not only HCl but also the SO4 component generated on the catalyst surface promotes the oxidation of elemental mercury. However, in the presence of SO2, the total mercury balance before and after the catalytic reaction was not matched, especially as the concentration of SO2 increased. In order to understand the cause of this, further studies are needed to investigate the effect of SO2 in the SnCl2 aqueous solution employed for mercury species analysis and the effect of sulfate ions generated on elemental mercury oxidation. It was confirmed that SO2 also promotes NOx removal activity, which is thought to be because the increase in acid sites by SO4 generated on the catalyst surface by SO2 facilitates NH3 adsorption. The composition change and structure of the components present on the catalyst surface under various reaction conditions were measured by XRD and XRF. These measurement results were presented as a rational explanation for the results that SO2 enhances the oxidation activity of elemental mercury and the NOx removal activity in this catalyst system.

Improvement and Validation of an Analytical Method for Quercetin-3-𝑜-gentiobioside and Isoquercitrin in Abelmoschus esculentus L. Moench (오크라 분말의 Quercetin-3-𝑜-Gentiobioside 및 Isoquercitrin의 분석법 개선 및 검증)

  • Han, Xionggao;Choi, Sun-Il;Men, Xiao;Lee, Se-jeong;Jin, Heegu;Oh, Hyun-Ji;Cho, Sehaeng;Lee, Boo-Yong;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.39-45
    • /
    • 2022
  • This study aimed to investigate the validation and modify the analytical method to determine quercetin-3-𝑜-gentiobioside and isoquercitrin in Abelmoschus esculentus L. Moench for the standardization of ingredients in development of functional health products. The analytical method was validated based on the ICH (International Conference for Harmonization) guidelines to verify the reliability and validity there of on the specificity, linearity, accuracy, precision, detection limit and quantification limit. For the HPLC analysis method, the peak retention time of the index component of the standard solution and the peak retention time of the index component of A. esculentus L. Moench powder sample were consistent with the spectra thereof, confirming the specificity. The calibration curves of quercetin-3-𝑜-gentiobioside and isoquercitrin showed a linearity with a near-one correlation coefficient (0.9999 and 0.9999), indicating the high suitability thereof for the analysis. A. esculentus L. Moench powder sample of a known concentration were prepared with low, medium, and high concentrations of standard substances and were calculated for the precision and accuracy. The precision of quercetin-3-𝑜-gentiobioside and isoquercitrin was confirmed for intra-day and daily. As a result, the intra-day precision was found to be 0.50-1.48% and 0.77-2.87%, and the daily precision to be 0.07-3.37% and 0.58-1.37%, implying an excellent precision at level below 5%. As a result of accuracy measurement, the intra-day accuracy of quercetin-3-𝑜-gentiobioside and isoquercitrin was found to be 104.87-109.64% and the daily accuracy thereof was found to be 106.85-109.06%, reflecting high level of accuracy. The detection limits of quercetin-3-𝑜-gentiobioside and isoquercitrin were 0.24 ㎍/mL and 0.16 ㎍/mL, respectively, whereas the quantitation limits were 0.71 ㎍/mL and 0.49 ㎍/mL, confirming that detection was valid at the low concentrations as well. From the analysis, the established analytical method was proven to be excellent with high level of results from the verification on the specificity, linearity, precision, accuracy, detection limit and quantitation limit thereof. In addition, as a result of analyzing the content of A. esculentus L. Moench powder samples using a validated analytical method, quercetin-3-𝑜-gentiobioside was analyzed to contain 1.49±0.01 mg/dry weight g, while isoquercitrin contained 1.39±0.01 mg/dry weight g. The study was conducted to verify that the simultaneous analysis on quercetin-3-𝑜-gentiobioside and isoquercitrin, the indicators of A. esculentus L. Moench, is a scientifically reliable and suitable analytical method.