• Title/Summary/Keyword: simulation variable

Search Result 2,461, Processing Time 0.034 seconds

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

A Study on Prediction of Land Use Demand in Seongnam-city Using System Dynamics (시스템 다이내믹스 기법을 활용한 성남시 토지이용수요 예측에 관한 연구)

  • Yi, Mi Sook;Shin, Dong Bin;Kim, Chang Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.261-273
    • /
    • 2022
  • This study aims to predict the land use demand of Seongnam-city using system dynamics and to simulate the effect of changes in family structure and land use density adjustment policy on land use demand. This study attempted to construct causal loop diagrams and an analysis model. The changes in land use demand over time were predicted through simulation results. As a result of the analysis, as of 2035, an additional supply of 2.08 km2 for residential land and 1.36 km2 for commercial land is required. Additionally, the current supply area of industrial land can meet the demand. Three policy experiments were conducted by changing the variable values in the basic model. In the first policy experiment, it was found that when the number of household members decreased sharply compared to the basic model, up to 7.99 km2 of additional residential land were required. In the second policy experiment, if the apartment floor area ratio was raised from 200% to 300%, it was possible to meet the demand for residential land with the current supply area of Seongnam-city. In the third policy experiment, it was found that even if the average number of floors in the commercial area was raised from four to five and the building-to-land ratio in the commercial area was raised from 80% to 85%, the demand for commercial land exceeded the supply area of the commercial area in Seongnam-city. This study is meaningful in that it proposes a new analytical model for land use demand prediction using system dynamics, and empirically analyzes the model by applying the actual urban planning status and statistics of Seongnam-city.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Behavioral Change of Workers who completed Experiential Safety Training (체험식 안전교육 이수 근로자의 행동 변화 연구)

  • Choonhwan, Cho
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.161-172
    • /
    • 2023
  • Safety education delivered to construction workers in a lecture manner has limitations in concentration and immersion, so delivery power and interest are low. In order to improve unstable behavior through education and prevent safety accidents, it is necessary to change the paradigm to hands-on education. Purpose: Experiential safety education aims to contribute to preventing accidents for construction workers by quickly recognizing risks, improving emergency response skills, and verifying the effectiveness of pre- and post-learning. Method: Based on a survey of workers who experienced the same work environment as the actual construction site, an opinion survey on the pre- and post-safety experience education and a variable measurement tool were planned, and a research hypothesis was established. Results: The Bayesian theory and MC simulation analysis were used to analyze the structural equation model, and the change in construction worker behavior was confirmed through the intended safety (A), non-experiential education in the sub-area of anxiety (B), average, standard deviation, and minimum and maximum values. Conclusion: The effect of education and industrial accidents are reduced only when construction workers are motivated to participate.

A System Dynamic for Investigating to Use of Building Information Modeling (BIM) for Hanok Construction (시스템 다이내믹스 기반 한옥건축의 BIM 접목 활성화 방안 연구)

  • Seo, Seung-Ha;Bang, Yei-Dam;Hyen, Ju-Hwan;Yu, Chaeyeon;Lee, Donghoon;Kim, Sungjin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.3-11
    • /
    • 2023
  • Building information modeling (BIM) can help to visualize and manage the building-related information at the object-based level, and it is possible to help link the tasks in the network of Hanok construction. While many studies have significant interest in using BIM for modern construction, there is only few studies to observe the use of BIM for traditional construction, commonly called Hanok construction in South Korea. Hence, the main goal of this study is to develop a system dynamic model for investigating how the BIM can be widely used for Hanok construction. To this end, this study identified the factors influencing the BIM uses for the Hanok construction, developed a causal loop diagram (CLD) to investigate the interrelationships among the factors, and provided a final model based on the mathematical definitions. Based on the scenario analysis, it is demonstrated that the support to building Hanok and education cost for BIM positively influence activating and using the BIM for the Hanok construction. Based on the dynamics of the factors identified in this study, it is important to consider expanding support for Hanok construction and education cost for BIM to successfully integrate and utilize BIM in the construction industry.

A Study on the Image Change Using Twinkle Artifact Images and Phantom according to Calcification-Inducing Environment in Breast Ultrasonography (유방 초음파 검사에서 석회화 유발 환경에 따른 반짝 허상과 팸텀을 활용한 영상 변화에 관한 연구)

  • Cheol-Min Jeon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.751-759
    • /
    • 2023
  • Breast ultrasonography is difficult to image in fatty breasts and to find micro-calcification, but the discovery of micro-calcification is very important for breast cancer screening. Among the color Doppler artifact of ultrasound, twinkle artifact mainly occur on strong reflectors such as stones or calcification in images, and evaluation methods using them are clinically being used. In this study, we are conducting experiments on the color Doppler settings of ultrasound equipment, such as repetition frequency, ensemble, persist, wall filtering, smoothing, linear density, and dissociation value, by producing a breast simulation phantom using the largest amount of calcium phosphate among breast implants. The purpose of this study was to improve the contrast of twinkle artifact in breast ultrasound examinations and to maximize their use in clinical practice. As a result, the pulse repetition frequency occurred in the range of 3.6 kHz to 7.2 kHz, and did not occur above 10.5 kHz. For ensembles, twinkle artifact occurred in all sizes of calcification under low conditions, and in threshold settings, the twinkle artifact increased slightly only under 80 to 100 conditions, and did not occur in 1 mm size calcification. Persist, wall filter, smoothing, and line density settings did not have much meaning in the setting variable because conditions did not increase by condition, and pulse repetition frequency, ensemble, and thresholds had the greatest impact on the twinkling artifact image. This study is expected to help examiners select optimal conditions to effectively increase twinkle artifact by adjusting color Doppler settings.

An Analysis of The Relationship Among Nursing Students' Perception of Target Vulnerability and Target Advocacy, Child Rights Awareness, and Child Abuse Reporting Intention (간호대학생이 지각한 대상자 취약성 및 옹호, 아동권리인식, 아동학대 신고의도 간의 관계 분석)

  • Ji-Ah Song;Jae Woo Oh
    • Journal of Industrial Convergence
    • /
    • v.22 no.3
    • /
    • pp.155-163
    • /
    • 2024
  • Nursing students, as prospective nurses, are expected to act as child abuse reporters and advocates for child targets. Therefore, this study aimed to provide a basis for developing a child abuse prevention education program for nursing students by determining the extent of nursing students' perceived target vulnerability and target advocacy, child rights awareness, and intention to report child abuse, and analyzing the relationships among the variables. This study is a descriptive survey study to identify the effects of target vulnerability, target advocacy, and child rights awareness on intention to report child abuse among 154 nursing students, and the data collection period was from July 3 to July 31, 2023, and the collected data were analyzed using SPSS 25.0 program. As a result of identifying the influential factors on nursing students' intention to report child abuse, child abuse education, championing social justice as a sub-variable of target advocacy, and target vulnerability, the explanatory power of these variables was 35.8%. Based on the results of this study, it is suggested that it is necessary to increase activities through the development and application of simulation education based on actual clinical cases in order to increase nursing students' interest in and education about child abuse.

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.