• Title/Summary/Keyword: simulation model interface

Search Result 548, Processing Time 0.033 seconds

An Object-Oriented Railway Model for Multi-Train Operation Simulation (객체지향 철도 모델에 의한 다중 열차운행 시뮬레이션)

  • 최규형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.193-200
    • /
    • 2003
  • A computer simulation program to evaluate the performance of railway systems and train operation plans and the effects of new technologies is provided. The program has the functions of tracing the movements of trains on railway network following the indication of railway signalling system and obeying all kinds of operation rules. An object-oriented technique is applied to model railway system effectively, and it is expected that the program code can be reused easily for other railway simulation programs. Dedicated graphic user interface displaying the simulation outputs by animation during simulation process makes the program convenient to use. Simulation results on the train operations on Kyung-bu line show the proposed program is promising.

Development of Brake System with ABS Function for Aircraft

  • Jeon, Jeong-Woo;Woo, Gui-Aee;Lee, Ki-Chang;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.423-427
    • /
    • 2003
  • In this paper, it is to development of brake system with ABS function for aircraft. The test of brake system is required before applying on aircraft. The real-time dynamic simulator with 5-D.O.F. aircraft dynamic model is developed for braking performance test of ABS (Anti-skid Brake System) control h/w with anti-skid brake functions. The dynamic simulator is real-time interface system that is composed of dynamic simulation parts, master control parts, digital and analog in/out interface parts, and user interface parts. The 5-D.O.F. aircraft dynamic model is composed of a big contour and a little contour by simulation s/w. The big contour represents the interactions of forces in airframe, nose and main landing gear, and engines on the center of gravity. The little contour represents interactions of wheel, braking units, hydraulic units and a control unit. ABS control h/w unit with ABS control algorithm is also developed and is tested with simulator under the some conditions of gripping coefficient. We have known that ABS control h/w unit on wet or snowy runway as well as dry runway very well protects wheel skid.

  • PDF

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Numerical Simulation of Tribological Phenomena Using Stochastic Models

  • Shimizu, T.;Uchidate, M;Iwabuchi, A.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.235-236
    • /
    • 2002
  • Tribological phenomena such as wear or transfer are influenced by various factors and have complicated behavior. Therefore, it is difficult to predict the behavior of the gribological phenomena because of their complexity. But, those tribological phenomena can be considered simply as to transfer micro material particles from the sliding interface. Then, we proposed the numerical simulation method for tribological phenomena such as wear of transfer using stochastic process models. This numerical simulation shows the change of the 3-D surface topography. In this numerical simulation, initial 3-D surface toughness data are generated by the method of non-causal 2-D AR (autoregressive) model. Processes of wear and transfer for some generated initial 3-D surface data are simulated. Simulation results show successfully the change of the 3-D surface topography.

  • PDF

대화 형식의 시뮬레이션 모델링

  • 서정화
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1995.10a
    • /
    • pp.0-0
    • /
    • 1995
  • Simulation tools are widely used for performance evaluation of newly proposed systems. However, many industrial simulation projects fail to attain the original goals ,especially when very complicated decision logics of the experienced operatorsare needed to be modeled. We propose a technique to overcome the oabstacles. In the proposed technique, complicated decision logics are not directly modeled but an interface for interactive input is provided in the model. While running the simulation model in concurrent animation mode, whenever operator's decisions are needed an interfce screen is displayed for operator's decisions. The operator then makes decisions using the information which is provided by the animation proces itself. This technique was successfully applied to an industrial simulation projects in which alternatives were evaluated for increasingthe color lot size of car print shop.

  • PDF

on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks (적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링)

  • 오성권;박병준;박춘성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In this study, 2-mm Al/Cu bimetallic laminates were produced using asymmetric roll bonding (RB) process. The asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, finite element simulation was used to model the deformation of bimetallic Al/Cu laminates. Specific attention was focused on the bonding strength and bonding quality of the interface between Al and Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric RB process. During the finite element simulation, the plastic strain of samples was found to reach the maximum value with a high quality bond for the samples produced with mismatch rolling speed 1:1.2. Moreover, the peeling surfaces of samples around the interface of laminates after the peeling test were studied to investigate the bonding quality by scanning electron microscopy.

Development of Road traffic Air Diffusion Simulation System using Graphic User Interface (GUI) (그래픽 유저 인터페이스(GUI)를 이용한 도로의 대기확산 예측시스템 개발)

  • Lee, Hwa-Woon;Oh, Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.411-419
    • /
    • 2003
  • The assessment of environmental impact on NO$_2$ (or TSP) emitted by vehicles is important for local residents from the point of view of their health and environmental protection. In the course of field investigations, correct concentrations are measured and meteorological data are observed for numerical simulation. To determine background concentration for numerical simulation, annual average concentrations of NO$_2$ (or TSP) are estimated using the Puff-Plume model. If the estimated result affects the environment, it must be considered in the environmental conservation activity. To make the process of a estimation of environmental assessment more easily, this system is developed. Moreover, this system was supplied a Graphic User Interface (GH) for the user who calculated the concentration of air pollution exhausted from the traffic on general roads except special roads such as interchanges and entrances to tunnels. This system can offer not only the numerical result but also a graphic display. Even a beginner who is not a professional programmer can calculate the result easily.

Reynolds and froude number effect on the flow past an interface-piercing circular cylinder

  • Koo, Bonguk;Yang, Jianming;Yeon, Seong Mo;Stern, Frederick
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.529-561
    • /
    • 2014
  • The two-phase turbulent flow past an interface-piercing circular cylinder is studied using a high-fidelity orthogonal curvilinear grid solver with a Lagrangian dynamic subgrid-scale model for large-eddy simulation and a coupled level set and volume of fluid method for air-water interface tracking. The simulations cover the sub-critical and critical and post critical regimes of the Reynolds and sub and super-critical Froude numbers in order to investigate the effect of both dimensionless parameters on the flow. Significant changes in flow features near the air-water interface were observed as the Reynolds number was increased from the sub-critical to the critical regime. The interface makes the separation point near the interface much delayed for all Reynolds numbers. The separation region at intermediate depths is remarkably reduced for the critical Reynolds number regime. The deep flow resembles the single-phase turbulent flow past a circular cylinder, but includes the effect of the free-surface and the limited span length for sub-critical Reynolds numbers. At different Froude numbers, the air-water interface exhibits significantly changed structures, including breaking bow waves with splashes and bubbles at high Froude numbers. Instantaneous and mean flow features such as interface structures, vortex shedding, Reynolds stresses, and vorticity transport are also analyzed. The results are compared with reference experimental data available in the literature. The deep flow is also compared with the single-phase turbulent flow past a circular cylinder in the similar ranges of Reynolds numbers. Discussion is provided concerning the limitations of the current simulations and available experimental data along with future research.

Comparison of a Groundwater Simulation-Optimization Numerical Model with the Analytical Solutions (해안지하수개발 최적화수치모델과 해석해의 비교연구)

  • Shi, Lei;Cui, Lei;Lee, Chan-Jong;Park, Nam-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.905-908
    • /
    • 2009
  • In the management of groundwater in coastal areas, saltwater intrusion associated with extensive groundwater pumping, is an important problem. The groundwater optimization model is an advanced method to study the aquifer and decide the optimal pumping rates or optimal well locations. Cheng and Park gave the analytical solutions to the optimization problems basing on Strack's analytical solution. However, the analytical solutions have some limitations of the property of aquifer, boundary conditions, and so on. A simulation-optimization numerical method presented in this study can deal with non-homogenous aquifers and various complex boundary conditions. This simulation-optimization model includes the sharp interface solution which solves the same governing equation with Strack's analytical solution, therefore, the freshwater head and saltwater thickness should be in the same conditions, that can lead to the comparable results in optimal pumping rates and optimal well locations for both of the solutions. It is noticed that the analytical solutions can only be applied on the infinite domain aquifer, while it is impossible to get a numerical model with infinite domain. To compare the numerical model with the analytical solutions, calculation of the equivalent boundary flux was planted into the numerical model so that the numerical model can have the same conditions in steady state with analytical solutions.

  • PDF