• Title/Summary/Keyword: simulation analyze

Search Result 4,342, Processing Time 0.038 seconds

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.

A Study on the Thermal Flow of Waste Heat Recovery Unit (WHRU) for Ship's Organic Rankine Cycle Power Generation System using CFD Method (CFD를 활용한 선박고온도차발전용 WHRU의 열유동 해석에 관한 연구)

  • Whang, Dae-jung;Park, Sang-kyun;Jee, Jae-hoon;Bang, Eun-shin;Oh, Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.647-655
    • /
    • 2021
  • The IMO (International Maritime Organization) is discussing the improvement of energy ef iciency of ships in order to reduce greenhouse gas emissions from ships. Currently, by applying an ORC power generation system using waste heat generated from ships, high energy conversion efficiency can be expected from ships. This technology uses an organic medium based on Freon or hydrocarbons as the working fluid, which evaporates at a lower temperature range than water. Through this, it is possible to generate steam (gas) and generate power at a low and low temperature relatively. In this study, the analysis of heat flow between the refrigerant and waste heat in the ORC power generation system, which is an organic Rankine cycle, is analyzed using 3D simulation techniques to determine the temperature change, velocity change, pressure change, and mass change of the fluid flowing of the WHRU (Waste Heat Recovery Unit) inside and the outside the structure. The purpose of this study is to analyze how the mass change affects the structure, and this study analyzed the heat transfer of the heat exchanger from the refrigerant and the exhaust gas of the ship's main engine in the ORC power generation system using this technique.

Defining the Tumour and Gross Tumor Volume using PET/CT : Simulation using Moving Phantom (양전자단층촬영장치에서 호흡의 영향에 따른 종양의 변화 분석)

  • Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.935-942
    • /
    • 2021
  • Involuntary movement of internal organs by respiration is a factor that greatly affects the results of radiotherapy and diagnosis. In this study, a moving phantom was fabricated to simulate the movement of an organ or a tumor according to respiration, and 18F-FDG PET/CT scan images were acquired under various respiratory simulating conditions to analyze the movement range of the tumor movement by respiration, the level of artifacts according to the size of the tumor and the maximum standardized uptake value (SUVmax). Based on Windows CE 6.0 as the operating system, using electric actuator, electric actuator positioning driver, and programmable logic controller (PLC), the position and speed control module was operated normally at a moving distance of 0-5 cm and 10, 15, and 20 reciprocations. For sphere diameters of 10, 13, 17, 22, 28, and 37 mm at a delay time of 100 minutes, 80.4%, 99.5%, 107.9%, 113.1%, 128.0%, and 124.8%, respectively were measured. When the moving distance was the same, the difference according to the respiratory rate was insignificant. When the number of breaths is 20 and the moving distance is 1 cm, 2 cm, 3 cm, and 5 cm, as the moving distance increased at the sphere diameters of 10, 13, 17, 22, 28, and 37 mm, the ability to distinguish images from smaller spheres deteriorated. When the moving distance is 5 cm compared to the still image, the maximum values of the standard intake coefficient were 18.0%, 23.7%, 29.3%, 38.4%, 49.0%, and 67.4% for sphere diameters of 10, 13, 17, 22, 28, and 37 mm, respectively.

Explication and Rational Conceptualization of Metaverse (메타버스 해석과 합리적 개념화)

  • Song, Stephen W.;Chung, Dong-Hun
    • Informatization Policy
    • /
    • v.28 no.3
    • /
    • pp.3-22
    • /
    • 2021
  • This article reviews previous literature on the metaverse and attempts to provide a refined definition for this phenomenon. Metaverse has recently been in the spotlight among discussions by the industry and the media while a consensus on the exact definition of metaverse is yet to be determined. Since Neal Stephenson first coined the term metaverse in his novel "Snow Crash" in 1992, the Acceleration Studies Foundation (ASF) was the first to analyze the concept of metaverse in 2007. While ASF's effort did not receive much spotlight it may have deserved, metaverse gained much attention in the fall of 2020 when NVIDIA announced its real-time simulation and collaboration platform for 3D production named "Omniverse" as a next-generation alternative for the Internet along with Roblox defining its service as metaverse during its IPO. Since then, metaverse has been commonly recognized as a world where we can cross over reality and virtuality. Based on the two axes and four scenarios proposed by the ASF, we review the literature across four realms as follows - virtual reality, mirror world, augmented reality, and lifelogging. Then, we examine the issues with the existing definition of metaverse and propose an alternative explanation by focusing on human behavior and user experience. Finally, we reassess the concept of metaverse and incorporate human communication, reality-based and virtual-based activities, and eXtended reality as elements to properly define metaverse.

Analysis on the Performance Impact of Partitioned LLC for Heterogeneous Multicore Processors (이종 멀티코어 프로세서에서 분할된 공유 LLC가 성능에 미치는 영향 분석)

  • Moon, Min Goo;Kim, Cheol Hong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.2
    • /
    • pp.39-49
    • /
    • 2019
  • Recently, CPU-GPU integrated heterogeneous multicore processors have been widely used for improving the performance of computing systems. Heterogeneous multicore processors integrate CPUs and GPUs on a single chip where CPUs and GPUs share the LLC(Last Level Cache). This causes a serious cache contention problem inside the processor, resulting in significant performance degradation. In this paper, we propose the partitioned LLC architecture to solve the cache contention problem in heterogeneous multicore processors. We analyze the performance impact varying the LLC size of CPUs and GPUs, respectively. According to our simulation results, the bigger the LLC size of the CPU, the CPU performance improves by up to 21%. However, the GPU shows negligible performance difference when the assigned LLC size increases. In other words, the GPU is less likely to lose the performance when the LLC size decreases. Because the performance degradation due to the LLC size reduction in GPU is much smaller than the performance improvement due to the increase of the LLC size of the CPU, the overall performance of heterogeneous multicore processors is expected to be improved by applying partitioned LLC to CPUs and GPUs. In addition, if we develop a memory management technique that can maximize the performance of each core in the future, we can greatly improve the performance of heterogeneous multicore processors.

A qualitative study of the experiences of nurse participants in a communication education program for nursing change-of-shift dialogue (의사소통 교육 체험에 대한 질적 연구 -간호사의 인수인계 대화를 중심으로)

  • Park, Song-Chol;Bak, Yong-Ik;Sok, So-Hyune;Lee, Hye-Yong;Jeoung, Yeon-Ok;Jin, Jeong-Kun;Lee, Jung-Woo
    • Health Communication
    • /
    • v.12 no.1
    • /
    • pp.97-110
    • /
    • 2017
  • Purpose: This study is an overview of the experiences of nurses who have participated in a communication education program which was designed to develop proper change-of-shift dialogues. The goal of this program was to improve the communication competencies of outgoing and incoming nurses during handover and takeover of their shifts. Methods: The materials used in this study to analyze the experiences qualitatively were transcripts from narrative interviews with seven nurse participants. The education program consisted of two rounds of change-of-shift simulations by pairs of nurses, planning of a forthcoming change-of-shift, three lectures on ideal dialogue patterns, and time for video feedback. Afterwards the participants' experiences of the program were evaluated generally, highlighting the positive and the negative aspects, and how this educational experiences might affect their future change-of-shift activities. Results: High practicability, originality, professionalism, and effectiveness were some of the positive assessments made by the nurse participants. In addition, they pointed out that the sample video in which two professors performed an ideal handover and takeover and the paper kardex were both quite unrealistic. The location of the change-of-shift simulation was also unfamiliar so it needed to be supplemented. However, most of the nurses took for granted that such a communication education program is necessary and that it will provide a substantial help in their future job performance. In this regard they recommended the program to all related hospitals and nursing schools. Conclusion: The results of this study could be applied to other forms of communication education programs regardless of the specific area where communication takes place.

Impact of pore fluid heterogeneities on angle-dependent reflectivity in poroelastic layers: A study driven by seismic petrophysics

  • Ahmad, Mubasher;Ahmed, Nisar;Khalid, Perveiz;Badar, Muhammad A.;Akram, Sohail;Hussain, Mureed;Anwar, Muhammad A.;Mahmood, Azhar;Ali, Shahid;Rehman, Anees U.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.343-354
    • /
    • 2019
  • The present study demonstrates the application of seismic petrophysics and amplitude versus angle (AVA) forward modeling to identify the reservoir fluids, discriminate their saturation levels and natural gas composition. Two case studies of the Lumshiwal Formation (mainly sandstone) of the Lower Cretaceous age have been studied from the Kohat Sub-basin and the Middle Indus Basin of Pakistan. The conventional angle-dependent reflection amplitudes such as P converted P ($R_{PP}$) and S ($R_{PS}$), S converted S ($R_{SS}$) and P ($R_{SP}$) and newly developed AVA attributes (${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$) are analyzed at different gas saturation levels in the reservoir rock. These attributes are generated by taking the differences between the water wet reflection coefficient and the reflection coefficient at unknown gas saturation. Intercept (A) and gradient (B) attributes are also computed and cross-plotted at different gas compositions and gas/water scenarios to define the AVO class of reservoir sands. The numerical simulation reveals that ${\Delta}R_{PP}$, ${\Delta}R_{PS}$, ${\Delta}R_{SS}$ and ${\Delta}R_{SP}$ are good indicators and able to distinguish low and high gas saturation with a high level of confidence as compared to conventional reflection amplitudes such as P-P, P-S, S-S and S-P. In A-B cross-plots, the gas lines move towards the fluid (wet) lines as the proportion of heavier gases increase in the Lumshiwal Sands. Because of the upper contacts with different sedimentary rocks (Shale/Limestone) in both wells, the same reservoir sand exhibits different response similar to AVO classes like class I and class IV. This study will help to analyze gas sands by using amplitude based attributes as direct gas indicators in further gas drilling wells in clastic successions.

Analysis of pneumatic braking component effects and characteristics of a diesel electric locomotive (디젤전기기관차의 공압제동 영향인자 및 특성 분석)

  • Choi, Don Bum;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.541-549
    • /
    • 2018
  • This paper deals with the braking dynamic behavior of diesel electric locomotive pulling domestic cargo and passenger vehicles. Friction coefficient, pneumatic pressure, and running resistance affecting the braking system were tested. For the friction coefficient, the Dynamo test was performed with reference to UIC 541-4. The results are analyzed by multivariate regression and the relationship between braking force and ititial velocity is presented. The pneumatic pressure were classified into service braking and emergency braking. In order to reflect the characteristics of the brake valve and piping, the pressure rising over time was measured in the vehicle. In order to reflect the external force acting on the vehicle, we carried out the test of EN 14067-4 and presented the second order polynomial formula on a running resistance. The running resistance test results were compared with other countries. The dynamic behavior of a diesel electric locomotive running on a straight flat track based on vehicle resources, friction coefficient, braking pressure, and running resistance is simulated using the time integration presented in EN 14531-1. The simulation results were compared and verified with the vehicle braking test results. The results of this study can be used to analyze the dynamic braking behavior of a train. Also, it is expected that various parameters affecting braking in vehicle design can be analyzed and used as basic data for braking performance improvement.

Strategies for utilizing Urban Ventilation Corridor considering Local Cold Air in Watershed Areas - A Case Study of Uijeongbu and Gwacheon - (유역의 찬공기 특성을 고려한 도시 바람길 활용 전략 - 경기도 의정부 및 과천 일대를 사례로 -)

  • EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.133-151
    • /
    • 2019
  • This study aims to analyze cold air characteristics in the watershed areas and to suggest strategies for utilizing them in urban ventilation corridor plans. For this purpose, the Jungnangcheon watershed and Uijeongbu-si in the northern part of Gyeonggi province, and Anyangcheon watershed as well as Yangjaecheon Tancheon watershed and Gwacheon-si in the southern part were selected as study areas. We used KALM (Kaltluftabflussmodell), a cold air simulation model developed in Germany and identified both the cold air flow and the height of cold air layer generated during 6 hours at night. Uijeongbu City is located on the main stream of the Jungnangcheon watershed, and the local cold air from the southern outskirts is an important part of Uijeongbu-si's overall ventilation corridor planning. In addition, the cold air generated in the vicinity of Mt. Sapae flows into the central business district near the city hall and plays a major role in regulating the thermal environment of the city. But, the cold air flows in the eastern part of Uijeongbu-si was not smoothly. The cold air flow generated in the east of Gwanak Mountain and in the west of Cheonggye Mountain was the most active in the northern part of Gwacheon-si. This flow is also a major ventilation corridor in Anyangcheon watershed as well as Yangjaecheon Tancheon watershed. But, the southern part where the cold air flow is not smooth is planed to be developed as 'Gwacheon Knowledge Information Town Public Housing District', so rapid development is expected in the future. Hence, it is suggested that an additional ventilation corridor plan should be established based on the detailed local wind flow analysis.

Post-2020 Emission Projection and Potential Reduction Analysis in Agricultural Sector (2020년 이후 농업부문 온실가스 배출량 전망과 감축잠재량 분석)

  • Jeong, Hyun Cheol;Lee, Jong Sik;Choi, Eun Jung;Kim, Gun Yeob;Seo, Sang Uk;Jeong, Hak Kyun;Kim, Chang Gil
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.233-241
    • /
    • 2015
  • In 2014, the United Nations Framework Convention on Climate Change (UNFCCC) agreed to submit the Intended Nationality Determined Contributions (INDCs) at the conference of parties held in Lima, Peru. Then, the South Korean government submitted the INDCs including GHGs reduction target and reduction potential on July, 2015. The goal of this study is to predict GHGs emission and to analyze reduction potential in agricultural sector of Korea. Activity data to estimate GHGs emission was forecast by Korea Agricultural Simulation Model (KASMO) of Korea Rural Economic Institute and estimate methodology was taken by the IPCC and guideline for MRV (Measurement, Reporting and Verification) of national greenhouse gases statistics of Korea. The predicted GHGs emission of agricultural sectors from 2021 to 2030 tended to decrease due to decline in crop production and its gap was less after 2025. Increasing livestock numbers such as sheep, horses, swine, and ducks did not show signigicant impact the total GHGs emission. On a analysis of the reduction potential, GHGs emission was expected to reduce $253Gg\;CO_{2-eq}$. by 2030 with increase of mid-season water drainage area up to 95% of total rice cultivation area. The GHGs reduction potential with intermittent drainage technology applied to 10% of the tatal paddy field area, mid-drainage and no organic matter would be $92Gg\;CO_{2-eq}$. by 2030.