• Title/Summary/Keyword: simulation, fracture mechanics

Search Result 122, Processing Time 0.024 seconds

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

Investigation on moisture migration of unsaturated clay using cross-borehole electrical resistivity tomography technique

  • Lei, Jiang;Chen, Weizhong;Li, Fanfan;Yu, Hongdan;Ma, Yongshang;Tian, Yun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.295-302
    • /
    • 2021
  • Cross-borehole electrical resistivity tomography (ERT) is an effective groundwater detection tool in geophysical investigations. In this paper, an artificial water injection test was conducted on a small clay sample, where the high-resolution cross-borehole ERT was used to investigate the moisture migration law over time. The moisture migration path can be two-dimensionally imaged based on the relationship between resistivity and saturation. The hydraulic conductivity was estimated, and the magnitude ranged from 10-11 m/s to 10-9 m/s according to the comparison between the simulation flow and the saturation distribution inferred from ERT. The results indicate that cross-borehole ERT could help determine the resistivity distribution of small size clay samples. Finally, the cross-borehole ERT technique has been applied to investigate the self-sealing characteristics of clay.

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

A Numerical Prediction of the Forming Limit Diagram Considering Damage Evolution (결함 성장을 고려한 수치해석적 성형한계도 예측)

  • Kim, K.T.;Song, J.H.;Lee, G.A.;Lee, H.W.;Kim, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.596-600
    • /
    • 2009
  • Finite element simulation is an alternative method to practically find the forming limit diagram(FLD). In this paper, the novel fracture criterion is utilized to predict the FLD in conjunction with finite element analysis for sheet forming. The principal scheme of the fracture criterion in this paper is that growth of the micro voids leads up to fracture in the viewpoint of micro-mechanics. The numerical FLD is verified by results of the out-of plane stretching test using hemispherical punch. The verification is also conducted about two types of material. These results are in good accord with the experimental results. Especially, the proposed scheme is appropriate to predict FLDs for a restricted material with low ductility after the instability point or ultimate tensile strength.

Elastic Network Model for Nano and Bio System Analysis (나노 및 바이오 시스템 해석을 위한 탄성네트워크모델)

  • Kim, Moon-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.668-669
    • /
    • 2008
  • In this paper, we introduce various coarse-grained elastic network modeling (ENM) techniques as a novel computational method for simulating atomic scale dynamics in macromolecules including DNA, RNA, protein, and polymer. In ENM, a system is modeled as a spring network among representative atoms in which each linear elastic spring is well designed to replace both bonded and nonbonded interactions among atoms in the sense of quantum mechanics. Based on this simplified system, a harmonic Hookean potential is defined and used for not only calculating intrinsic vibration modes of a given system, but also predicting its anharmonic conformational change, both of which are strongly related with its functional features. Various nano and bio applications of ENM such as fracture mechanics of nanocomposite and protein dynamics show that ENM is one of promising tools for simulating atomic scale dynamics in a more effective and efficient way comparing to the traditional molecular dynamics simulation.

  • PDF

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Numerical Simulation of Fracture Mechanism by Blasting using PFC2D (PFC2D에서의 발파에 의한 파괴 메커니즘의 수치적 모델링)

  • Jong, Yong-Hun;Lee, Chung-In;Jeon, Seok-Won
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.476-485
    • /
    • 2006
  • During blasting, both shock wave and gas are generated in detonation process of explosives and the generated wave and gas expansion may create new fractures and damage rock mass. In order to explain and understand completely the fracture mechanism by blasting, we have to consider both effects of the wave and gas expansion simultaneously. In this study, we use a discrete element code, PFC2D and develop an algorithm which is capable of modeling both detonation and gas pressures acting on blasthole wall and visualizing generated cracks within rock mass. Moreover, the gas-pressure modeling method which applies a corresponding external force of gas pressure to parent particles of radial fractures is adopted to simulate a coopting between rock mass and gas penetrating created radial fractures. The developed algorithm is verified by reproducing numerical simulations of a lab-scale test blast successfully.

Numerical Simulation of Gas Flow within a Radial Fracture Created by Single-Hole Blasting (단일공 발파에서 생성된 균열망에 작용하는 가스압의 수치해석적 산정)

  • Jeng, Yong-Hun;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.16 no.5 s.64
    • /
    • pp.413-421
    • /
    • 2006
  • In order to explain entirely dynamic fracture process induced by blasting in rock mass, it needs to consider detonation pressure and gas pressure acting on blasthole wall simultaneously. In this study, prior to simulating the coupling between gas flow and rock mass, we analyzed effects of gas pressure-time history, length of cracks and equation of state adopted to calculate the gas pressure on the gas flow within a radial fracture created by single-hole blasting. The effects were investigated on two assumptions: (a) the radial fracture was composed of 5 cracks which were 0.01 m in length and 0.001 m in asperity each and (b) the PETN explosive which diameter was 36 mm was charged in a blasthole of 45 mm diameter. It was concluded that the maximum gas pressure and its travel time were dependent on characteristics of charged explosives and geometrical properties of radial fracture.

The Effect of Analysis Variables on the Failure Probability of the Reactor Pressure Vessel by Pressurized Thermal Shock (가압열충격에 의한 원자로 압력용기의 파손확률에 미치는 해석변수의 영향)

  • Jang, Chang-Heui;Jhung, Myung-Jo;Kang, Suk-Chull;Choi, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.693-700
    • /
    • 2004
  • The probabilistic fracture mechanics(PFM) is a useful analytical tool to assess the integrity of reactor pressure vessel(RPV) at the event of pressurized thermal shock(PTS). In PFM, the probabilities of flaw initiation and propagation are estimated by comparing the applied stress intensity factor with the fracture toughness calculated by the simulation of various stochastic variables. It is known that the results of PFM analyses are dependent on the choice of the stochastic parameters and assumptions. Of the various variables and assumptions, we investigated the effects of the RT$_{NDT}$ shift equations, fracture toughness curves, and flaw distributions on the PFM results for the three PTS transients. The results showed that the combined effects of the RT$_{NDT}$ shift equations and fracture toughness curves are complicated and dependent on the characteristics of the transients, the chemistry of the materials, the fast neutron fluence, and so on.

Development of Analytical Simulation Model for Fatigue Crack Propagation : Crack Closure Behavior Modeling (균열개폐구 거동을 고려한 피로균열전파 해석 모델의 개발 : 균열 개폐구 거동의 모형화)

  • C.W. Kim;I.S. Nho;H.H. Van;B.C. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.74-83
    • /
    • 2001
  • After the concept of fracture mechanics was applied to fatigue crack propagation by Paris. Paris' law is widely used to predict fatigue crack growth behavior. Since Elber proposed the effective stress intensity factor(SIF) and showed a good agreement with experimental results using the proposed SIF, emphasis in crack propagation studies has been placed on measuring the effective stress range ratio. This paper proposes a numerical model to simulate the crack closure and propagation behaviour under various loading spectrum. The validity of the proposed model is checked by comparing with the Toyosada numerical solutions on the crack propagation behaviour. Important insights developed are summarized.

  • PDF