• 제목/요약/키워드: simulation, fracture mechanics

검색결과 123건 처리시간 0.027초

축방향 관통균열이 존재하는 증기발생기 세관의 파손확률 예측 (Failure Probability Estimation of Steam Generator Tube Containing Axial Through-Wall Crack)

  • 문성인;이상민;배성렬;장윤석;황성식;김정수;김영진
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.137-143
    • /
    • 2005
  • The integrity of steam generator tubes in nuclear power plant should be maintained sufficiently during operation. For sake of this, complicated assessment procedures are required such as fracture mechanics analysis, etc. The integrity assessment of tubes has been performed by using conventional deterministic approaches while there are many uncertainties to carry out a rational evaluation. In this respect, probabilistic integrity assessment is considered as an alternative method for integrity assessment. The objectives of this study are to develop an integrity assessment system based on probabilistic fracture mechanics and to predict the failure probability of steam generator tubes containing an axial through-wall crack. The developed integrity assessment system consists of three evaluation modules, which apply first order reliability method, second order reliability method and Monte Carlo simulation method, respectively. The system has been applied to predict failure probability of steam generator tubes and the estimation results showed a promising applicability of the probabilistic integrity assessment system.

유한요소 연성파손 모사기법을 이용한 노치 결함 반경 크기에 따른 파괴역학적 평가 (Fracture Mechanics Assessment for Different Notch Sizes Using Finite Element Analysis Based on Ductile Failure Simulation)

  • 배근형;전준영;한재준;남현석;이대영;김윤재
    • 대한기계학회논문집A
    • /
    • 제40권8호
    • /
    • pp.693-701
    • /
    • 2016
  • 본 논문에서는 파괴역학적 방법으로 노치 결함을 평가해 보았다. 인장 하중과 굽힘하중이 작용하는 중앙 균열, 모서리 균열 평판 구조물을 바탕으로 노치 크기를 달리하며 한계하중 및 에너지해방률을 유한요소 해석의 J-적분으로 도출하였다. 노치의 반경이 커짐에 따라 한계하중은 큰 변화가 없었으며, 에너지해방률는 커지는 양상을 보였다. 노치 반경에 따른 재료 파괴인성($J_{IC}$)측정을 위해 실험을 대신한 유한요소 연성파손 모사기법을 사용하였다. 그 결과 노치 크기 증가에 따른 에너지해방률 증가량 대비 파괴인성($J_{IC}$) 증가량이 더욱 큰 양상을 보였다. 이런 결과를 통해 노치 반경이 커질수록 균열 진전에 대한 저항성이 커진다는 사실을 알 수 있었다.

Physical and Particle Flow Modeling of Shear Behavior of Non-Persistent Joints

  • Ghazvinian, A.;Sarfarazi, V.;Nejati, H.;Hadei, M.R.
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2011년도 추계 총회 및 창립 30주년 기념 심포지엄
    • /
    • pp.3-21
    • /
    • 2011
  • Laboratory experiments and numerical simulations using Particle Flow Code (PFC2D) were performed to study the effects of joint separation and joint overlapping on the full failure behavior of rock bridges under direct shear loading. Through numerical direct shear tests, the failure process is visually observed and the failure patterns are achieved with reasonable conformity with the experimental results. The simulation results clearly showed that cracks developed during the test were predominantly tension cracks. It was deduced that the failure pattern was mostly influenced by both of the joint separation and joint overlapping while the shear strength is closely related to the failure pattern and its failure mechanism. The studies revealed that shear strength of rock bridges are increased with increasing in the joint separation. Also, it was observed that for a fixed cross sectional area of rock bridges, shear strength of overlapped joints are less than the shear strength of non-overlapped joints.

  • PDF

원전 주요기기의 확률론적 평가 기법 (Probabilistic Evaluation Methodology for Nuclear Components)

  • 이준성;곽상록;김영진;박윤원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.459-464
    • /
    • 2001
  • For major nuclear power plant components periodic inspections and integrity assessments are needed for the safety. But many flaws are undetectable due to sampling inspection. Probabilistic integrity assessment is applied to take into consideration of uncertainty and variance of input parameters arise due to material properties, applied load and undetectable flaws. This paper describes a Probabilistic Fracture Mechanics(PFM) analysis based on Monte Carlo(MC) algorithms. Taking important parameters as probabilistic variables such as fracture toughness, crack growth rate and flaw shape, failure probability of major nuclear power plant components is archived as a results of MC simulation. For the verification of these analysis, a comparison study of the PFM analysis using other commercial code, mathematical method is carried out and a good agreement was observed between those results.

  • PDF

Simulation of corroded RC structures using a three-dimensional irregular lattice model

  • Kim, Kunhwi;Bolander, John E.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.645-662
    • /
    • 2012
  • Deteriorative effects of steel corrosion on the structural response of reinforced concrete are simulated for varying degrees of corrosion. The simulation approach is based on a three-dimensional irregular lattice model of the bulk concrete, in which fracture is modeled using a crack band approach that conserves fracture energy. Frame elements and bond link elements represent the reinforcing steel and its interface with the concrete, respectively. Polylinear stress-slip properties of the link elements are determined, for several degrees of corrosion, through comparisons with direct pullout tests reported in the literature. The link properties are then used for the lattice modeling of reinforced concrete beams with similar degrees of corrosion of the main reinforcing steel. The model is successful in simulating several important effects of steel corrosion, including increased deflections, changes in flexural cracking behavior, and reduced yield load of the beam specimens.

다양한 하중 상태에서의 마이크로 크랙킹 거동 해석 (Analysis of Microcracking Behaviors of Solids under Multiple-Loading Conditions)

  • 강성수;김홍건
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.23-29
    • /
    • 2007
  • Fracture behavior of brittle solids such as rocks, ceramics and concrete is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The proposed meso analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to uniaxial and biaxial macrostress. The obtained results are in good agreement with the results by computational damage mechanics model. The validity of the proposed method has been demonstrated by these numerical examples.

가압열충격을 받는 원자로압력용기의 확률론적 건전성 해석 (Probabilistic Integrity Analysis of Reactor Pressure Vessel under Pressurized Thermal Shock)

  • 김종욱;허남수;유연식;김태완
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.727-728
    • /
    • 2008
  • The objective of this study is to evaluate the integrity for a reactor pressure vessel under the pressurized thermal shock by applying the probability fracture mechanics. A semi-elliptical axial crack is assumed to be in the beltline region of the reactor pressure vessel. The selected random variables are the neutron fluence on the vessel inside surface, the content of copper, nickel, and phosphorus in the reactor pressure vessel material, and initial RTNDT. The probabilistic integrity analysis was performed using the Monte Carlo simulation.

  • PDF

Modeling concrete fracturing using a hybrid finite-discrete element method

  • Elmo, Davide;Mitelman, Amichai
    • Computers and Concrete
    • /
    • 제27권4호
    • /
    • pp.297-304
    • /
    • 2021
  • The hybrid Finite-Discrete Element (FDEM) approach combines aspects of both finite elements and discrete elements with fracture mechanics principles, and therefore it is well suited for realistic simulation of quasi-brittle materials. Notwithstanding, in the literature its application for the analysis of concrete is rather limited. In this paper, the proprietary FDEM code ELFEN is used to model concrete specimens under uniaxial compression and indirect tension (Brazilian tests) of different sizes. The results show that phenomena such as size effect and influence of strain-rate are captured using this modeling technique. In addition, a preliminary model of a slab subjected to dynamic shear punching due to progressive collapse is presented. The resulting fracturing pattern of the impacted slab is similar to observations from actual collapse.

신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가 (Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation)

  • 이상민;윤강옥;장윤석;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.

Numerical simulation of the crack propagation behavior in 3D elastic body

  • Taniguchi, Takeo;Miyaji, Akihiko;Suetsugu, Takeshi;Matsunaga, Shohgo
    • Structural Engineering and Mechanics
    • /
    • 제2권3호
    • /
    • pp.227-244
    • /
    • 1994
  • The purpose of this investigation is to propose a numerical simulation method of the crack propagation behavior in 3-dimensionl elastic body. The simulation method is based on the displacement-type finite element method, and the linear fracture theory is introduced. The results from the proposed method are compared with those from the structural experiments, and the good coincidences between them are shown in this paper. At the same time, 2-dimensional analysis is also done, and the results are compared with those obtained from 3-dimensional analysis and the structural experiments.