• Title/Summary/Keyword: simulated moving bed

Search Result 38, Processing Time 0.025 seconds

Simulation of IgY(Immunoglobulin Yolk) Purification by SMB(Simulated Moving Bed) (SMB(Simulated Moving Bed)를 이용한 IgY(Immunoglobulin Yolk) 분리의 전산모사)

  • Song, Sung-Moon;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.798-803
    • /
    • 2011
  • IgY(Immunoglobulin Yolk) is a specific antibody in egg yolk, and it protects human body from virus and antigen. There are a lot of egg yolk components such as lipoprotein and protein. To separate IgY, HPLC(High Performance Liquid Chromatography) and precipitation were used in a batch mode and SMB(Simulated Moving Bed) was adopted for continuous purification of yolk proteins. IgY and other proteins in yolk were separated by using three-zone SMB chromatography. Before performing SMB experiments, batch chromatography and PIM(pulse input method) were performed to find operation parameters and adsorption isotherms. The results of batch chromatography were compared with simulated results using Aspen chromatography. To find the most suitable separation condition in SMB chromatography, simulations in $m_2$-$m_3$ plane on the triangle theory were carried out. $m_2$ = 0.18, $m_3$ = 1.0 and ${\Delta}$t = 419 s are the best conditions for the highest purity of IgY. With this operating parameters(flow rate in three zone and switching time), the purity of raffinate results in 98.39% from Aspen chromatography simulation. Most of the simulation reached steadystate within second recycle.

Comparing the Performance of One-column Process and Four-zone Simulated Moving Bed by Computer Simulation

  • Kim Young Sik;Lee Chong Ho;Wankat Phillip C.;Koon Yoon Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.362-368
    • /
    • 2004
  • A new one-column chromatography process, analogous to a four-zone simulated moving bed (SMB), was presented. The basic principle of the process was identical to that of a four-zone SMB. The process consisted of one chromatographic column and four tanks, instead of the four columns in the four-zone SMB (1-1-1-1), and has been used for the separation of two amino acids, phenylalanine and tryptophan, using an ion exchange resin. The operating parameters for the one-column process and four-zone SMB were obtained from equilibrium theory. Computer simulations were used to compare the performances of the new one column process to that of the general four-zone SMB, using Aspen $Chromatography^{TM}$ v 11.1. The differences between the one-column and SMB processes in terms of the purities and yields of phenylalanine and tryptophan were less than 4 and about $6\%$, respectively. The lower purities of the one-column process were due to the loss of the developed concentration profiles in the column when the liquid was stored in tanks. The one-column process gave great flexibility, and would be useful for reconstructing an existing conventional chromatography process to one of a SMB.

Phenol Concentration using Thermal Simulated Moving Bed Concentrator (TSMBC(Thermal Simulated Moving Bed Concentrator)를 이용한 페놀 농축)

  • Gil, Mun-Seok;Kim, Jin-Il;Lee, Ju Weon;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1027-1033
    • /
    • 2012
  • Conventional SMB process is operated using 4-zone having several chromatography columns in each zone. Unlike batch chromatography, SMB process can continuously separate binary materials. Both high productivity and purity are obtainable by using SMB process. In this study, the simulation on Thermal Simulated Moving Bed Concentrator (TSMBC) which is a SMB process with thermal swing adsorption was carried out. The advantage of TSMBC is that adsorption isotherm can be easily controlled by thermal wave or direct heating. Recovery of pure water and concentration of phenol was studied in simulation. To verify environmental-friendly potential of TSMBC, DOWEX $1{\times}4$ was chosen as an adsorbent and phenol was selected as a target material. When 3 columns were used in this study, concentration of phenol is 2.29, 2.28 and 1.31 times higher than injected sample. However, a contamination of phenol in solvent port was found, probably due to the restriction of adsorption isotherm of phenol on DOWEX $1{\times}4$.

Sensitivity Analysis of Amino Acids in Simulated Moving Bed Chromatography

  • Lee, Ju-Weon;Lee, Chong-Ho;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.110-115
    • /
    • 2006
  • We conducted a sensitivity analysis of the simulated moving bed (SMB) chromatography with the case model of the separation of two amino acids phenylalanine and tryptophan. We consider a four-zone SMB chromatography where the triangle theory is used to determine the operating conditions. Competitive Langmuir isotherm model was used to determine the adsorption isotherm. The finite difference method is used to solve nonlinear partial differential equation (PDE) systems numerically. We examined the effects of alterations in the operating conditions(feed-extract, feed-raffinate, eluent-extract, eluent-raffinate, recycle, and switching time) and the adsorption isotherm parameters (Langmuir isotherm parameters a and b) on SMB efficiency. The variation range of operating conditions and Langmuir isotherm a was between -50 and 50% of original value and the variation range of the Langmuir isotherm b was between $2.25^{-5}$ and $2.25^5$ times of original value.

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography (Simulated Moving Bed 크로마토그래피를 이용한 프럭토 올리고당의 정제)

  • Oh, Nan-Suk;Lee, Chong-Ho;Koo, Yoon-Mo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.715-721
    • /
    • 2005
  • The SMB chromatography is used to obtain high purification of fructooligosaccharides (FOS), the mixture of kestose and nystose. SMB operation condition is usually determined by triangle theory or standing wave design when reactions do not occur within columns during experiment. Some of the reactions in columns may considerably affect experimental results. FOS can be hydrolyzed and converted into glucose and fructose during operation. To include the effect of reaction, the concentrations of each component at steady state after hydrolysis were used in simulation. The obtained simulation values are well matched with experimental results except sucrose. For sucrose, the experimental results were different from expected one due to the existence of an intermediate component. FOS is easily hydrolyzed and converted into glucose and fructose in more acidic condition and at higher temperature. Hydrolysis reaction can be prevented by the pretreatment of separation resin with NaOH as well as operation under lower temperature.

Comparative Simulation of 3-zone SMB (Simulated Moving Bed) and 4-zone SMB for IgY (Immunoglobulin Yolk) Purification (IgY (Immunoglobulin Yolk) 분리를 위한 3-영역 SMB (Simulated Moving Bed)와 4-영역 SMB 비교전산모사)

  • Yun, Sang-Hee;Kim, In-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.866-873
    • /
    • 2012
  • IgY (Immunoglobulin Yolk) is a specific antibody in egg yolk, and it protects human body from virus and antigen. There are a lot of egg yolk components such as lipoprotein and protein. To separate IgY, HPLC (High Performance Liquid Chromatography) and precipitation were used in a batch mode and SMB (Simulated Moving Bed) was adopted for continuous purification of yolk proteins. IgY and other proteins in yolk were separated by using three-zone and four-zone SMB chromatography. Before performing SMB experiments, batch chromatography simulation parameters and adsorption isotherms were obtained. The parameters of batch chromatography were used to simulate SMB using Aspen chromatography. To compare three-zone and four-zone SMB chromatography, simulations in $m_2-m_3$ plane on the triangle theory were carried out. In terms of concentration and purity of both IgY and other lipoproteins, 3-zone SMB process is considered as ideal at the vertex of triangle ($m_2$, $m_3$=0.1, 1.1). 4-zone SMB yields the highest IgY purity at the coordinate ($m_2$, $m_3$=0.06, 0.5), which is the pure raffinate region. In 3-zone SMB without recycle, other lipoproteins in extract are largely affected in purity by small shift from the vertex of triangle ($m_2$, $m_3$=0.1, 1.1).