• 제목/요약/키워드: simplified static analysis

검색결과 149건 처리시간 0.024초

이선형 재료모델의 비선형 정적해석을 위한 강성추정 알고리즘 개발 (Development of Stiffness Estimation Algorithm for Nonlinear Static Analysis of Bilinear Material Model)

  • 정성진;박세희
    • 한국산학기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.620-626
    • /
    • 2016
  • 구조물의 비선형 지진응답을 평가하는 것은 내진공학에 있어서 중요한 요소로 인식되고 있다. 비선형 정적해석은 이를 위한 대표적인 방법론의 하나이며, 특정 해석단계에서의 구조물 강성추정을 위한 다양한 수치해석적 방법론들이 제시, 적용되고 있다. 하지만, 이러한 방법론들은 상당한 해석시간을 요하거나 부정확한 간편법에 그치고 있어 실무적용에 많은 어려움이 존재한다. 이러한 이유로 본 연구에서는 비선형 정적해석 시 정확하고 효과적인 구조물 강성추정 방법론을 제시하고자 한다. 이를 위하여, 기존의 단계해석법에 대한 이론적 연구를 수행하였으며, 이를 바탕으로 이선형 재료모델 특성을 가진 구조물의 강성구성 알고리즘을 제시하였다. 최종적으로, 제시된 알고리즘을 적용한 컴퓨터 프로그램 sNs를 개발하였다.

Progressive collapse analysis of stainless steel composite frames with beam-to-column endplate connections

  • Wang, Jia;Uy, Brian;Li, Dongxu;Song, Yuchen
    • Steel and Composite Structures
    • /
    • 제36권4호
    • /
    • pp.427-446
    • /
    • 2020
  • This paper carries out the progressive collapse analysis of stainless steel composite beam-to-column joint sub-models and moment-resisting frames under column removal scenarios. The static flexural response of composite joint sub-models with damaged columns was initially explored via finite element methods, which was validated by independent experimental results and discussed in terms of moment-rotation relationships, plastic hinge behaviour and catenary actions. Simplified finite element methods were then proposed and applied to the frame analysis which aimed to elaborate the progressive collapse response at the frame level. Nonlinear static and dynamic analysis were employed to evaluate the dynamic increase factor (DIF) for stainless steel composite frames. The results suggest that the catenary action effect plays an important role in preventing the damaged structure from dramatic collapse. The beam-to-column joints could be critical components that influence the capacity of composite frames and dominate the determination of dynamic increase factor. The current design guidance is non-conservative to provide proper DIF for stainless steel composite frames, and thus new DIF curves are expected to be proposed.

A simplified analysis of super building structures with setback

  • Takabatake, Hideo;Ikarashi, Fumiya;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.43-64
    • /
    • 2011
  • One-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. The mechanical behavior of structures composed of distinct constituents of different stiffness such as coupled walls with opening is significantly governed by the local variation of stiffness. Furthermore, in structures with setback the distribution of the longitudinal stress behaves remarkable nonlinear behavior in the transverse-wise. So, the author proposed the two-dimensional rod theory as an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. This paper proposes how to deal with the two-dimensional rod theory for structures with setback. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures. The transverse-wise nonlinear distribution of the longitudinal stress due to the existence of setback is clarified to originate from the long distance from setback.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

1차원 지반응답해석을 통한 사면의 증폭특성 규명 (Estimation of amplification of slope via 1-D site response analysis)

  • 윤세웅;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.620-625
    • /
    • 2009
  • The seismic slope stability is most often evaluated by the pseudo-static limit analysis, in which the earthquake loading is simplified as static inertial loads acting in horizontal and/or vertical directions. The transient loading is represented by constant acceleration via the pseudostatic coefficients. The result of a pseudostatic analysis is governed by the selection of the value of the pseudostatic coefficient. However, selection of the value is very difficult and often done in an ad hoc manner without a sound physical reasoning. In addition, the maximum acceleration is commonly estimated from the design guideline, which cannot accurately estimate the dynamic response of a slope. There is a need to perform a 2D dynamic analysis to properly define the dynamic response characteristics. This paper develops the modified one-dimensional seismic site response analysis. The modified site response analysis adjusts the density of the layers to simulate the change in mass and weight of the layers of the slope with depth. Multiple analyses are performed at various locations within the slope to estimate the change in seismic response of the slope. The calculated peak acceleration profiles with depth from the developed procedure are compared to those by the two-dimensional analyses. Comparisons show that the two methods result in remarkable match.

  • PDF

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Computational Design of Bifurcation: A Case Study of Darundi Khola Hydropower Project

  • Koirala, Ravi;Chitrakar, Sailesh;Neopane, Hari Prasad;Chhetri, Balendra;Thapa, Bhola
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.1-8
    • /
    • 2017
  • Bifurcation refers to wye division of penstock to divide the flow symmetrically or unsymmetrically into two units of turbine for maintaining economical, technical and geological substrates. Particularly, water shows irrelevant behavior when there is a sudden change in flow direction, which results into the transition of the static and dynamic behavior of the flow. Hence, special care and design considerations are required both hydraulically and structurally. The transition induced losses and extra stresses are major features to be examined. The research on design and analysis of bifurcation is one of the oldest topics related to R&D of hydro-mechanical components for hydropower plants. As far as the earlier approaches are concerned, the hydraulic designs were performed based on graphical data sheet, head loss considerations and the mechanical analysis through simplified beam approach. In this paper, the multi prospect approach for design of Bifurcation, incorporating the modern day's tools and technology is identified. The hydraulic design of bifurcation is a major function of dynamic characteristics of the flow, which is performed with CFD analysis for minimum losses and better hydraulic performances. Additionally, for the mechanical design, a simplified conventional design method as pre-estimation and Finite Element Method for a relevant result projections were used.

철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구 (Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames)

  • 김선웅
    • 한국전산구조공학회논문집
    • /
    • 제27권1호
    • /
    • pp.27-35
    • /
    • 2014
  • 본 연구에서는 2경간 합성바닥슬래브의 기여도를 반영하여 철골모멘트골조의 연쇄붕괴저항성능의 더욱 정확한 평가를 위해 사용할 수 있는 개선된 에너지기반 비선형정적 해석법을 제시하고자 한다. 이를 위해, 우선 재료적/기하학적 비선형 유한요소해석을 수행하여 2경간 합성바닥슬래브의 거동을 살펴보았다. 2경간 합성바닥슬래브의 변형형상을 이상화하여 에너지기반 해석을 위한 근사모델을 개발하였다. 제안모델은 기둥제거 시나리오하에서 2경간 합성바닥슬래브의 일방향 축인장력 및 변형에너지응답을 모델링하는데 쉽게 이용할 수 있음을 보여주고 있다.

Wind-induced responses of supertall buildings considering soil-structure interaction

  • Huang, Yajun;Gu, Ming
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.223-234
    • /
    • 2018
  • In this study, a simplified three-dimensional calculation model is developed for the dynamic analysis of soil-pile group-supertall building systems excited by wind loads using the substructure method. Wind loads acting on a 300-m building in different wind directions and terrain conditions are obtained from synchronous pressure measurements conducted in a wind tunnel. The effects of soil-structure interaction (SSI) on the first natural frequency, wind-induced static displacement, root mean square (RMS) of displacement, and RMS of acceleration at the top of supertall buildings are analyzed. The findings demonstrate that with decreasing soil shear wave velocity, the first natural frequency decreases and the static displacement, RMS of displacement and RMS of acceleration increase. In addition, as soil material damping decreases, the RMS of displacement and the RMS of acceleration increase.