• 제목/요약/키워드: simplified fuzzy reasoning method

검색결과 19건 처리시간 0.028초

Generalized Fuzzy Modeling

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1145-1150
    • /
    • 1993
  • In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.

  • PDF

퍼지제어를 위한 가속화 추론 방법 (Accelerated reasoning method for fuzzy control)

  • 남세규;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1058-1062
    • /
    • 1993
  • A fuzzy reasoning method is proposed for the implementation of control systems based on non-fuzzy microprocessors. The essence of the proposed method is to search the local active miles instead of the global rule base. Thus the reasoning is conveniently performed on a master cell as a fuzzy accelerating kernel, which is transformed from an active fuzzy cell. The interpolative reasoning is simplified via adopting the algebraic product of fulfillment for the conditional connective AND and the weighted average for the rule sentence connective ALSO.

  • PDF

엘리버이터 군관리 시스템을 위한 예견퍼지 제어 알고리즘에 관한 연구 (A Study on Predictive Fuzzy Control Algorithm for Elevator Group Supervisory System)

  • 최돈;박희철;우광방
    • 대한전기학회논문지
    • /
    • 제43권4호
    • /
    • pp.627-637
    • /
    • 1994
  • In this study, a predictive fuzzy control algorithm to supervise the elevator system with plural cars is developed and its performance is evaluated. The proposed algorithm is based on fuzzy in-ference system to cope with multiple control objects and uncertainty of system state. The control objects are represented as linguistic predictive fuzzy rules and simplified reasoning method is utilized as a fuzzy inference method. Real-time simulation is performed with respect o all possible modes of control, and the resultant controls ard predicted. The predicted rusults are then utilized as the control in-puts of the fuzzy rules. The feasibility of the proposed control algorithm is evaluated by graphic simulator on computer. Finallu, the results of graphic simulation is compared with those of a conventional group control algorighm.

  • PDF

퍼지PID제어를 이용한 추종 제어기 설계 (Fuzzy PID Controller Design for Tracking Control)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Notes on Conventional Neuro-Fuzzy Learning Algorithms

  • Shi, Yan;Mizumoto, Masaharu
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.391-394
    • /
    • 1998
  • In this paper, we try to analyze two kinds of conventional neuro-fuzzy learning algorithms, which are widely used in recent fuzzy applications for tuning fuzzy rules, and give a summarization of their properties. Some of these properties show that uses of the conventional neuro-fuzzy learning algorithms are sometimes difficult or inconvenient for constructing an optimal fuzzy system model in practical fuzzy applications.

  • PDF

FNN에 기초한 Fuzzy Self-organizing Neural Network(FSONN)의 구조와 알고리즘의 구현 (The Implementation of the structure and algorithm of Fuzzy Self-organizing Neural Networks(FSONN) based on FNN)

  • 김동원;박병준;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.114-117
    • /
    • 2000
  • In this paper, Fuzzy Self-organizing Neural Networks(FSONN) based on Fuzzy Neural Networks(FNN) is proposed to overcome some problems, such as the conflict between ovefitting and good generation, and low reliability. The proposed FSONN consists of FNN and SONN. Here, FNN is used as the premise part of FSONN and SONN is the consequnt part of FSONN. The FUN plays the preceding role of FSONN. For the fuzzy reasoning and learning method in FNN, Simplified fuzzy reasoning and backpropagation learning rule are utilized. The number of layers and the number of nodes in each layers of SONN that is based on the GMDH method are not predetermined, unlike in the case of the popular multi layer perceptron structure and can be generated. Also the partial descriptions of nodes can use various forms such as linear, modified quadratic, cubic, high-order polynomial and so on. In this paper, the optimal design procedure of the proposed FSONN is shown in each step and performance index related to approximation and generalization capabilities of model is evaluated and also discussed.

  • PDF

The Optimal Tuning Algorithm for Fuzzy Controller

  • Oh, Sung-kwun;Park, Jong-jin;Woo, Kwang-bang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.830-833
    • /
    • 1993
  • In this paper, an optimal tuning Algorithms is presented to automatically improve the performance of fuzzy controller, using the simplified reasoning method and the proposed complex method. The method estimates automatically the optimal values of the parameters of fuzzy controller, according to the change rate and limitation condition of output. The controller is applied to plants with dead time. Then, computer simulations are conducted at step input and the performances are evaluated in the ITAE.

  • PDF

BLDC 모터의 속도 제어를 위한 퍼지 PI 제어기 설계 (Design of a Fuzzy PI Controller for the Speed Control of BLDC Motor)

  • 송승준;김용;이승일;이은영;김필수;조규만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1147-1150
    • /
    • 2001
  • This paper represents a realization of a fuzzy PI control method for a speed control of BLDC motor. In other words, the gains of the PI controller is tuned by a fuzzy logic controller. Simplified reasoning methods are used for fuzzy reasoning. Fuzzy logic speed controller is designed by using the high performance of DSPchip(TMS320F240). By experiment, it is confirmed that the speed of BLDC motor well follows an command speed in the load variables or speed variables.

  • PDF

이동물체 추적을 위한 퍼지제어 시스템 설계 (A Design of Fuzzy Control System for Moving Object Tracking)

  • 강석범;김재기;양태규
    • 한국정보통신학회논문지
    • /
    • 제5권4호
    • /
    • pp.738-745
    • /
    • 2001
  • 본 논문에서는 추적시스템이 3차원 공간을 움직이는 이동물체를 추적한다. 오차없이 추적하기 위하여 제어시스템은 인공지능을 가진 퍼지제어기를 사용하였다. 추적시스템은 요(yaw)운동과 롤(roll) 운동을 통해 3차원 공간을 추적한다. 추적시스템으로는 2링크 매니플레이터를 사용하였고, 매니플레이터의 관절각 $\theta_1는 0^{\circ}에서\; 360^{\circ}$까지 회전 할 수 있으며, 관절각 $\theta_a는 0^{\circ}에서\; 180^{\circ}$까지 회전할 수 있다. 퍼지제어기의 퍼지화 방법은 싱클톤방법, 제어 규칙은 25개, 추론법은 간략화된 Mamdani의 추론법, 비퍼지화 방법은 간략화된 무게 중심법을 사용하였다. 시뮬레이션은 퍼지제어기의 성능을 평가하기 위해 같은 조건하에 CTM제어기와 비교하였다. 매니플레이터에 외란 토크를 적용하지 않았을 때 두 제어기 모두 추적오차가 0에 가까웠으며, 외란토크가 0.4N 일 때 CTM제어기를 사용한 경우에는 퍼지제어기를 사용한 경우보다 시뮬레이션결과 절대 오차 합이 10배 이상 큼을 알 수 있다. 퍼지 제어기가 CTM제어기보다 외란토크의 추가시 강함을 검증하였다.

  • PDF