• Title/Summary/Keyword: simplified MDOF model

Search Result 4, Processing Time 0.016 seconds

Seismic Behavior and Performance Assesment of a One-story Building with a Flexible Diaphragm (유연한 지붕으로 된 단층 구조물의 지진 거동과 성능 분석)

  • ;;Donald W. White
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.377-386
    • /
    • 2003
  • The proposed simplified MDOF model is applied to a half-scale single-story reinforced masonry test building with a single diagonally-sheathed diaphragm. Comparisons of analytical studies to experimental tests can be valuable for understanding the seismic response of these types of buildings and for determining the qualities and limitations of the simplified models. A model calibration process is performed in this paper to determine the required structural properties based on the elastic and inelastic test responses for test building. This approach is necessary since established methods to determine the in-plane and out-of-plane stiffness, strength, and hysteresis do not exist.

Structural Parameters and Modeling Technique for Prediction of Dynamic Response of a One-story Building with a Flexible Diaphragm (유연한 지붕을 갖는 단층 건물의 동적응답 예측을 위한 해석모델링 방법과 구조변수의 설정)

  • ;Donald W. White
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.271-280
    • /
    • 2003
  • The purpose of the study presented in this paper is to develope the general model for capture of the linear and nonlinear response of a flexible diaphragm building in which there are significant contributions from the out-of-plane walls. Two single-story single-diaphragm half scale reinforced masonry buildings were tested by researchers at the United States Army Construction Engineering Research Laboratory (CERL). The first had a metal deck diaphragm. The second specimen had a diaphragm with a single layer of diagonal lumber sheathing, A multiple degree of freedom (MDOF) approach is adopted in this paper. The required stiffnesses and strengths of the components within this model are determined.

Capacity and Placement of MR Damper for Vibration Control of MDOF System (다자유도 시스템의 진동제어를 위한 MR감소기 용량 및 위치 선정)

  • 이상현;민경원;이루지;김대곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.34-40
    • /
    • 2004
  • In this paper, peliminary design procedure of magnetorheological (MR) dampers is developed for controlling the building response induced by seismic excitation. Hysteretic biviscous model which is simple and can describe the hysteretic characteristics of MR damper is used for parametric studies. The capacity of MR damper is determined as a portion of not the building weight but the lateral restoring force. A method is proposed for the optimal placement and number of MR dampers, and its effectiveness is verified by comparing it with the simplified search algorithm. Numerical results indicate that the capacity, number and the placement can be reasonably determined using the proposed design procedure.

  • PDF

Assessment of a dual isolation system with base and vertical isolation of the upper portion

  • Sasan Babaei;Panam Zarfam;Abdolreza Sarvghad Moghadam;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.263-271
    • /
    • 2023
  • Base isolation is a widely used technique for the seismic control of structures as it reduces the structural seismic demand. However, displacement of the isolation layer is not economically feasible in congested urban areas. To resolve the issue, an innovative system is proposed here to isolate both horizontally at the base and vertically in the upper portion of the structure. A simplified linear three degree-of-freedom (3DOF) model of the system that considers the mass and stiffness ratios of the substructure has been introduced and analyzed in MATLAB by spectrum analysis. The 3DOF model results revealed that, when the period of the soft substructure reaches 2.5 times that of the stiff substructure, the isolation and the lower substructure responses decrease by 65% and 51%, respectively. Time-history analysis of a MDOF system at three frequency ratios under a wide range of ground motions indicated that, at the expense of accepting a certain large drift by the soft substructure in the upper portion of the structure, base isolation displacement can be decreased by 10%.