• Title/Summary/Keyword: simplex-lattice mixture design

Search Result 7, Processing Time 0.029 seconds

Consumer Acceptance of Three Rice Varieties Formulated by a Simplex-Lattice Mixture Design

  • Choi, In-Duck;Son, Jong-Rok;Hong, Ha-Cheol;Kim, Kee-Jong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.78-83
    • /
    • 2006
  • A simplex-lattice mixture design was applied to blend three varieties of rice; Ilpum (IP), Goami2 (G2) and Baegjinju (BJJ) all of which have very different physicochemical properties from one another. G2 and BJJ are mutant rice developed from IP. Increasing G2 portions in a rice blend increases indigestible carbohydrate contents. Blending at least 33.3% of G2 to either IP or BJJ increased indigestible carbohydrates, which were approximately $3.55{\pm}1.31\;to\;4.57{\pm}0.37$(g/100 g), respectively. Consumers rated higher than 6.0 (=like slightly) for the IP alone and binary blends of IP and BJJ, whereas less than 5.0 (=dislike moderately) for the blends containing G2 rice, indicating that consumers would not accept rice blends containing higher G2 portions. However, although blends with G2 were given lower consumer ratings, a rice blend with G2 could have health benefits in terms of nutritional and functional properties due to the higher indigestible carbohydrate contents.

Control of Shrinkage Cracking of Cement Composites with Different Length Mixture of PVA Fibers (서로 다른 길이의 PVA 섬유 혼합에 따른 시멘트 복합체의 균열제어 특성)

  • Won, Jong-Pil;Kim, Myung-Kyun;Park, Chan-Gi;Kim, Wan-Young;Park, Kyoung-Hoon;Jang, Chang-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.405-408
    • /
    • 2006
  • The purpose of this study was to determine the optimum length distribution of hybrid PVA(Poly vinyl alcohol) fiber. To produce blended PVA fiber length, first the length distribution of PVA fiber in the cement composites were identified in an experimental study based on simplex lattice design. Among the different length distributions investigated, fiber length was found to have statistically significant effect on plastic shrinkage cracking of cement composites. Subsequently, Complex analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected fiber length distribution based on plastic shrinkage crack. The optimum blended PVA length ratio was 0.0146% 4mm fiber, 0.0060% 6-mm fiber, 0.0285% 8-mm fiber, and 0.0209% 12-mm fiber.

  • PDF

Pasting and Texture Properties of Rice Blends Formulated with Three Rice Cultivars

  • Choi, In-Duck;Kim, Deog-Su;Son, Jong-Rok;Yang, Chang-Inn;Choi, Im-Su;Kim, Kee-Jong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.292-296
    • /
    • 2006
  • Three rice cultivars of Goami2 (G2), Ilpumbyeo (IP), and Baegjinju (BJJ) of which physicochemical properties are significantly different, were blended by a simplex-lattice mixture design. The effect of blending those rice cultivars on pasting and texture properties were observed. Rapid Visco Analysis (RVA) indicated that the onset gelatinization temperature of pure blend of G2 rice $(83.80{\pm}0.07^{\circ}C)$ was higher than that of IP $(68.08{\pm}0.01^{\circ}C)$ and BJJ $(68.08{\pm}0.04^{\circ}C)$. Increasing G2 rice resulted in lower peak and breakdown viscosity, and adhesiveness and cohesiveness, whereas higher setback viscosity and hardness. Pasting and texture properties of IP and BJJ indicated that G2 rice has quite different physical characteristics compared to IP and BJJ. Thus, it is expected that blending those three rice cultivars can be used to formulate a desirable rice blend on purpose, furthermore to promote the consumption of G2 rice, which has higher indigestible carbohydrate contents.

Using Design of Mixture Experiments to Select the Ratio of a Three-Component Electrode for Optimal Generation of Hydroxyl Radicals (혼합물 실험계획법을 이용한 OH라디칼 최적 생성을 위한 삼성분 전극의 비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.8
    • /
    • pp.793-800
    • /
    • 2020
  • The conventional development of multi-component electrodes is based on the researcher's experience and is based on trial and error. Therefore, there is a need for a scientific method to reduce the time and economic losses thereof and systematize the mixing of electrode components. In this study, we use design of mixture experiments (DOME)- in particular a simplex lattice design with Design Expert program- to attempt to find an optimum mixing ratio for a three-component electrode for the high RNO degradation; RNO is an indictor of OH radical formation. The experiment included 12 experimental points with 2 center replicates for 3 different independent variables (with the molar ratio of Ru, Ti, Ir). As the Prob > F value of the 'Quadratic' model is 0.0026, the secondary model was found to be suitable. Applying the molar ratio of the electrode components to the corrected response model results is an RNO removal efficiency (%) = 59.89 × [Ru] + 9.78 × [Ti] + 67.03 × [Ir] + 66.38 × [Ru] × [Ir] + 132.86 × [Ti] × [Ir]. The R2 value of the equation is 0.9374 after the error term is excluded. The optimized formulation of the ternary electrode for an high RNO degradation was acquired when the molar ratio of Ru 0.100, Ti 0.200, Ir 0.700 (desirability d value, 1).

Optimization of Ramen Flour Formulation by Mixture Experimental Design (혼합물실험설계법에 의한 라면 밀가루 혼합비의 최적화)

  • Park, Hye Ryong;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.297-304
    • /
    • 2011
  • Ramen flour formulation was optimized by applying a mixture experimental design. In the optimization, the overall palatability (OP) of cooked ramen and the rheological properties of selected dough were maximized or minimized. Blended ratios of the ingredients such as Dark Northern Spring (DNS), Hard Red Winter (HRW), and Soft White (SW) were designed on a simplex-lattice. Dough rheological properties were measured by Rapid Visco Analyser (RVA), Farinograph, and Extensograph, and the overall palatability by sensory evaluation. Several principal dough rheological properties such as RVA peak viscosity (PV), Farinograph development time (DT), and Extensograph resistance/extensibility after 45 min (R/E 45 min) were selected to influence the overall palatability by canonical correlation analysis (CCA). Goals of the optimization were given as OP maximized, PV maximized, DT minimized, and R/E at 45 min maximized. The optimization results were found to be DNS 33.3%, HRW 33.3%, and SW 33.3% with OP, 5.825; PV, 587.9 cP; DT, 3.1 min; R/E at 45 min, 2.339 BU/mm.

Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments (혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).

Analysis of Mechanical Properties of Colored EPDM Based on Additive Mixing Ratio Using Mixture Design of Experimental Method (혼합물 실험계획법을 이용한 유색 EPDM의 첨가제 배합비에 따른 기계적 특성 분석)

  • Park, Yoon-A;Jeon, Euy-Sik;Kim, Young-Shin;Lee, Hyun-Seung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.79-86
    • /
    • 2022
  • With the recent increase in the demand for electric vehicles, it is necessary to identify the high current safety of automobile parts. Among the automobile parts, the EPDM parts required colored parts from the existing black; therefore, it was necessary to change the basic filler from carbon black to silica. The rubber used in automobile parts is flexible and exhibits basic characteristics of high strength and elongation. However, as the filler is changed to silica, its physical properties, such as tensile strength and elongation, are lower than those of the existing carbon black base. Therefore, it is necessary to evaluate the mechanical properties with the addition of the EPDM compound using silica as a base without degrading the physical properties of EPDM. In this study, an experiment based on the additive content was performed using the mixture experimental planning method to analyze the mechanical properties according to the additive type and mixing ratio of silica-based EPDM. The mixing ratio of the four additives was set using a simplex lattice design, and the tensile strength, elongation, modulus 300%, and permanent compression reduction rate were analyzed for mechanical characteristics, and rheometer experiments were performed for vulcanization characteristics. Through statistical analysis of the measured data, the main effects and interactions of the EPDM-blended rubber additives were analyzed. These results can be used to derive a mixing ratio of additives that satisfies the required characteristics of the EPDM compound.