• 제목/요약/키워드: simple structure

검색결과 4,542건 처리시간 0.029초

The structural method of modular system expressed in contemporary fashion design (현대 패션디자인에 표현된 모듈러 시스템의 구조방식)

  • Yoon, Jeong-A;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • 제22권5호
    • /
    • pp.776-793
    • /
    • 2014
  • This study attempted to figure out the usage of the modular system in other fields through literature review and empirical study, analyze its structural method in fashion. After analyzing architecture & product-related books, the Internet data and previous studies, the modular system's five structural methods were obtained. Then, 991 photos of women's clothes from 2003 to 2014 were collected through the fashion websites in Korea and abroad. The results can be summarized as follows: First, the following five structures were derived: assembling structure, overlapping structure, arrangement structure, inserting structure and folding structure. Second, according to analysis on the structural method of the modular system in modern fashion, overlapping structure (34%) was the most common. Third, in fashion, the use of fastener for installation and removal is important for assembling structure. In terms of overlapping structure, 3D volume by vertical accumulation was commonly observed. Arrangement structure revealed a horizontal and flat shape through simple arrangement. In inserting structure, on the contrary, non-standardized modules were used as a part of clothes or decorative elements. In folding structure, origami technique for reduction and expansion was used.

Seismic Response of Multi-Supported Spatial Structure under Seismic Excitation (다중지점 지진하중에 대한 아치구조물의 지진응답 분석)

  • Kim, Gee-Cheo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제13권4호
    • /
    • pp.57-66
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response for seismic design of spatial structure. Keel arch structure is used as an example structure because it has primary characteristics of spatial structures. In case of spatial structures with different ground condition and time lag, multiple support excitation may be subjected to supports of a keel arch structure. In this study, the response of the keel arch structure under multiple support excitation and with time lag are analyzed by means of the pseudo excitation method. Pseudo excitation method shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic responses of spatial structure under multiple support excitation are different from those of spatial structure under simple excitation. And the seismic response of spatial structure with time lag are different from those of spatial structure without time lag. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation and time lag because the spatial structure supports may be different and very long span. It is shown that the seismic response of spatial structure under multiple support seismic excitation are different from those of spatial structure under unique excitation.

Defect Chemistry in Simple ATi$O_3$Perovskite Ceramics (ATi$O_3$단순 페롭스카이트의 결함구조)

  • Han, Yeong-Ho
    • Korean Journal of Materials Research
    • /
    • 제2권4호
    • /
    • pp.248-256
    • /
    • 1992
  • This paper has reviewed some of the basic principles that underlie the field of defect chemistry in simple ATi$O_3$(A=Ca, Sr, Ba) perovskites. Frenkel defects in perovskite structure is very much unlikely, and Schottky defects and intrinsic electronic defects in undoped materials are negligibly small compared with background acceptor impurities. The electrical properties of perovskite ceramics are dependent on the aliovalent impurities. Since perovskite structure is a ternary system, the stoiohiometry between cations as well as cation-anion ratio will affect defect structure and electrical properties. BaTi$O_3$and SrTi$O_3$show a limited deviation from the cation stoichiometry while CaTi$O_3$has significant excess CaO and Ti$O_2$solubility.

  • PDF

Fabrication of Patchable Organic Lasing Sheets via Soft Lithography

  • Kim, Ju-Hyung
    • Clean Technology
    • /
    • 제22권3호
    • /
    • pp.203-207
    • /
    • 2016
  • Here, we report a novel fabrication technique for patchable organic lasing sheet based on non-volatile liquid organic semiconductors and freestanding polymeric film with high flexibility and patchability. For this work, we have fabricated the second-order DFB grating structure, which leads to surface emission, embedded in the freestanding polymeric film. Using an ultra-violet (UV) curable polyurethaneacrylate (PUA) mixture, the periodic DFB grating structure can be easily prepared on the freestanding polymeric film via a simple UV curing process. Due to unsaturated acrylate remained in the PUA mixture after UV curing, the freestanding PUA film provides adhesive properties, which enable mounting of the patchable organic lasing sheet onto non-flat surfaces with conformal contact. To achieve laser actions in the freestanding resonator structure, a composite material of liquid 9-(2-ethylhexyl)carbazole (EHCz) and organic laser dyes was used as the laser medium. Since the degraded active materials can be easily refreshed by a simple injection of the liquid composite, such a non-volatile liquid organic semiconducting medium has degradation-free and recyclable characteristics in addition to other strong advantages including tunable optoelectronic responses, solvent-free processing, and ultimate mechanical flexibility and uniformity. Lasing properties of the patchable organic lasing sheet were also investigated after mounting onto non-flat surfaces, showing a mechanical tunability of laser emission under variable surface curvature. It is anticipated that these results will be applied to the development of various patchable optoelectronic applications for light-emitting displays, sensors and data communications.

Hydrogen Bonds in GlcNAc( β1,3)Gal( β)OMe in DMSO Studied by NMR Spectroscopy and Molecular Dynamics Simulations

  • Shim, Gyu-Chang;Shin, Jae-Min;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.198-202
    • /
    • 2004
  • Hydrogen bond is an important factor in the structures of carbohydrates. Because of great strength, short range, and strong angular dependence, hydrogen bonding is an important factor stabilizing the structure of carbohydrate. In this study, conformational properties and the hydrogen bonds in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO are investigated through NMR spectroscopy and molecular dynamics simulation. Lowest energy structure in the adiabatic energy map was utilized as an initial structure for the molecular dynamics simulations in DMSO. NOEs, temperature coefficients, SIMPLE NMR data, and molecular dynamics simulations proved that there is a strong intramolecular hydrogen bond between O7' and HO3' in GlcNAc( ${\beta}$1,3)Gal(${\beta}$)OMe in DMSO. In aqueous solution, water molecule makes intermolecular hydrogen bonds with the disaccharides and there was no intramolecular hydrogen bonds in water. Since DMSO molecule is too big to be inserted deep into GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe, DMSO can not make strong intermolecular hydrogen bonding with carbohydrate and increases the ability of O7' in GlcNAc(${\beta}$1,3)Gal(${\beta}$)OMe to participate in intramolecular hydrogen bonding. Molecular dynamics simulation in conjunction with NMR experiments proves to be efficient way to investigate the intramolecular hydrogen bonding existed in carbohydrate.

Probabilistic Analysis of Dynamic Characteristics of Structures considering Joint Fastening and Tolerance (체결부 및 공차를 고려한 구조물의 확률기반 동적 특성 연구)

  • Won, Jun-Ho;Kwang, Kang-Jin;Choi, Joo-Ho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • 제18권4호
    • /
    • pp.44-50
    • /
    • 2010
  • Structural vibration is a significant problem in many multi-part or multi-component assemblies. In aircraft industry, structures are composed of various fasteners, such as bolts, snap, hinge, weld or other fastener or connector (collectively "fasteners"). Due to these, prediction and design involving dynamic characteristics is quite complicated. However, the current state of the art does not provide an analytical tool to effectively predict structure's dynamic characteristics, because consideration of structural uncertainties (i.e. material properties, geometric tolerance, dimensional tolerance, environment and so on) is difficult and very small fasteners in the structure cause a huge amount of analysis time to predict dynamic characteristics using the FEM (finite element method). In this study, to resolve the current state of the art, a new approach is proposed using the FEM and probabilistic analysis. Firstly, equivalent elements are developed using simple element (e.g. bar, beam, mass) to replace fasteners' finite element model. Developed equivalent elements enable to explain static behavior and dynamic behavior of the structure. Secondly, probabilistic analysis is applied to evaluate the PDF (probability density function) of dynamic characteristics due to tolerance, material properties and so on. MCS (Monte-Carlo simulation) is employed for this. Proposed methodology offers efficiency of dynamic analysis and reality of the field as well. Simple plates joined by fasteners are taken as an example to illustrate the proposed method.

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Automatic melody extraction algorithm using a convolutional neural network

  • Lee, Jongseol;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6038-6053
    • /
    • 2017
  • In this study, we propose an automatic melody extraction algorithm using deep learning. In this algorithm, feature images, generated using the energy of frequency band, are extracted from polyphonic audio files and a deep learning technique, a convolutional neural network (CNN), is applied on the feature images. In the training data, a short frame of polyphonic music is labeled as a musical note and a classifier based on CNN is learned in order to determine a pitch value of a short frame of audio signal. We want to build a novel structure of melody extraction, thus the proposed algorithm has a simple structure and instead of using various signal processing techniques for melody extraction, we use only a CNN to find a melody from a polyphonic audio. Despite of simple structure, the promising results are obtained in the experiments. Compared with state-of-the-art algorithms, the proposed algorithm did not give the best result, but comparable results were obtained and we believe they could be improved with the appropriate training data. In this paper, melody extraction and the proposed algorithm are introduced first, and the proposed algorithm is then further explained in detail. Finally, we present our experiment and the comparison of results follows.

Study of composite structure design and manufacturing for compliant legged robot (유연다리로봇 복합구조 설계 및 제작 기술 연구)

  • Choi, Rock-Hyun;Kang, Yoo-Na;Aulia, Widya;Lee, Gyoung-Jae;Lee, Dong-Ha;Kwon, Oh-Seok;Moon, Sang-Jun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.410-413
    • /
    • 2012
  • A traditional fabrication method is very difficult to make small robots using embedded sensors, actuators and connectors. Fortunately, Shape Deposition Manufacturing can provide an alternative method, and it has many benefits. Firstly, the weight of robot can be lighter, as it can be consisted of composite materials. Secondly, SDM can make simple robot structures because this approach does not need to use connectors and fasteners. Lastly, SDM gives stiffness and flexibility at the specific parts. Therefore, in this paper, we present a design of 3 segment legs organized by SDM, what the SDM approach is, and compare SDM method with 3 segment prototype legs which uses a traditional approach and made by DGIST.

  • PDF

Simple Structure LED-Driving Power Converter with High Power Factor (높은 역률을 가지는 단순 구조 LED 구동 전력컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • 제22권3호
    • /
    • pp.767-773
    • /
    • 2018
  • This paper proposes the simple structure LED-driving power converter with high power factor. As the proposed power converter combines the PFC boost converter and the conventional flyback converter into only one power conversion circuit, it simplifies the structure of LED-driving power converter. Thus the proposed converter is controlled using only one PWM controller IC, and it achieves high power factor, constant output voltage/current and cost-effectiveness. Therefore the proposed converter is suitable for the industry production and utilization of LED-light-system. In this paper, the operation analysis and design example of the proposed converter are explained, briefly. Also experimental results of the prototype that is implemented based on the designed circuit parameters are shown to validate operation characteristics of the proposed converter.