• Title/Summary/Keyword: similarity-based estimation

Search Result 145, Processing Time 0.024 seconds

DISPARITY ESTIMATION/COMPENSATION OF MULTIPLE BASELINED STEREOGRAM USING MAXIMUM A POSTERIORI ALGORITHM

  • Sang-Hwa;Park, Jong-Il;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.49-56
    • /
    • 1999
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived. The generalized formula is implemented with the plane configuration model and applied to multiple baselined stereograms. The probabilistic plane configuration model consists of independence and similarity among the neighboring disparities in the configuration. The independence probabilistic model reduces the computation and guarantees the discontinuity at the object boundary region. The similarity model preserves the continuity or the high correlation of disparity distribution. In addition, we propose a hierarchical scheme of disparity compensation in the application to multiple-view stereo images. According to the experiments, the derived formula and the proposed estimation algorithm outperformed other ones. The proposed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to O(n(D)) from O(n(D)4) of the generalized formula. And, the hierarchical scheme of disparity compensation with multiple-view stereos improves the performance without any additional overhead to the decoder.

Robust Image Similarity Measurement based on MR Physical Information

  • Eun, Sung-Jong;Jung, Eun-Young;Park, Dong Kyun;Whangbo, Taeg-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4461-4475
    • /
    • 2017
  • Recently, introduction of the hospital information system has remarkably improved the efficiency of health care services within hospitals. Due to improvement of the hospital information system, the issue of integration of medical information has emerged, and attempts to achieve it have been made. However, as a preceding step for integration of medical information, the problem of searching the same patient should be solved first, and studies on patient identification algorithm are required. As a typical case, similarity can be calculated through MPI (Master Patient Index) module, by comparing various fields such as patient's basic information and treatment information, etc. but it has many problems including the language system not suitable to Korean, estimation of an optimal weight by field, etc. This paper proposes a method searching the same patient using MRI information besides patient's field information as a supplementary method to increase the accuracy of matching algorithm such as MPI, etc. Unlike existing methods only using image information, upon identifying a patient, a highest weight was given to physical information of medical image and set as an unchangeable unique value, and as a result a high accuracy was detected. We aim to use the similarity measurement result as secondary measures in identifying a patient in the future.

Spontaneous Speech Language Modeling using N-gram based Similarity (N-gram 기반의 유사도를 이용한 대화체 연속 음성 언어 모델링)

  • Park Young-Hee;Chung Minhwa
    • MALSORI
    • /
    • no.46
    • /
    • pp.117-126
    • /
    • 2003
  • This paper presents our language model adaptation for Korean spontaneous speech recognition. Korean spontaneous speech is observed various characteristics of content and style such as filled pauses, word omission, and contraction as compared with the written text corpus. Our approaches focus on improving the estimation of domain-dependent n-gram models by relevance weighting out-of-domain text data, where style is represented by n-gram based tf/sup */idf similarity. In addition to relevance weighting, we use disfluencies as Predictor to the neighboring words. The best result reduces 9.7% word error rate relatively and shows that n-gram based relevance weighting reflects style difference greatly and disfluencies are good predictor also.

  • PDF

Image Registration of Aerial Image Sequences (연속 항공영상에서의 Image Registration)

  • 강민석;김준식;박래홍;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.48-57
    • /
    • 1992
  • This paper addresses the estimation of the shift vector from aerial image sequences. The conventional feature-based and area-based matching methods are simulated for determining the suitable image registration scheme. Computer simulations show that the feature-based matching schemes based on the co-occurrence matrix, autoregressive model, and edge information do not give a reliable matching for aerial image sequences which do not have a suitable statistical model or significant features. In area-based matching methods we try various similarity functions for a matching measure and discuss the factors determining the matching accuracy. To reduce the estimation error of the shift vector we propose the reference window selection scheme. We also discuss the performance of the proposed algorithm based on the simulation results.

  • PDF

Micro-seismic monitoring in mines based on cross wavelet transform

  • Huang, Linqi;Hao, Hong;Li, Xibing;Li, Jun
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1143-1164
    • /
    • 2016
  • Time Delay of Arrival (TDOA) estimation methods based on correlation function analysis play an important role in the micro-seismic event monitoring. It makes full use of the similarity in the recorded signals that are from the same source. However, those methods are subjected to the noise effect, particularly when the global similarity of the signals is low. This paper proposes a new approach for micro-seismic monitoring based on cross wavelet transform. The cross wavelet transform is utilized to analyse the measured signals under micro-seismic events, and the cross wavelet power spectrum is used to measure the similarity of two signals in a multi-scale dimension and subsequently identify TDOA. The offset time instant associated with the maximum cross wavelet transform spectrum power is identified as TDOA, and then the location of micro-seismic event can be identified. Individual and statistical identification tests are performed with measurement data from an in-field mine. Experimental studies demonstrate that the proposed approach significantly improves the robustness and accuracy of micro-seismic source locating in mines compared to several existing methods, such as the cross-correlation, multi-correlation, STA/LTA and Kurtosis methods.

New stereo matching algorithm based on probabilistic diffusion (확률적 확산을 이용한 스테레오 정합 알고리듬)

  • 이상화;이충웅
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.4
    • /
    • pp.105-117
    • /
    • 1998
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The probabilistic models are independence and similarity among the neighboring disparities in the configuration.The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into the some different forms corresponding to the probabilistic models in the disparity neighborhood system or configuration. And, we proposed new probabilistic models in order to simplify the joint probability distribution of disparities in the configuration. According to the experimental results, the proposed algorithm outperformed the other ones, such as sum of swuared difference(SSD) based algorithm and Scharstein's method. We canconclude that the derived formular generalizes the probabilistic diffusion based on Bayesian MAP algorithm for disparity estimation, and the propsoed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to 0.01% of the generalized formula.

  • PDF

Similarity-based Dynamic Clustering Using Radar Reflectivity Data (퍼지모델을 이용한 유사성 기반의 동적 클러스터링)

  • Lee, Han-Soo;Kim, Su-Dae;Kim, Yong-Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.219-222
    • /
    • 2011
  • There are number of methods that track the movement of an object or the change of state, such as Kalman filter, particle filter, dynamic clustering, and so on. Amongst these method, dynamic clustering method is an useful way to track cluster across multiple data frames and analyze their trend. In this paper we suggest the similarity-based dynamic clustering method, and verifies it's performance by simulation. Proposed dynamic clustering method is how to determine the same clusters for each continuative frame. The same clusters have similar characteristics across adjacent frames. The change pattern of cluster's characteristics in each time frame is throughly studied. Clusters in each time frames are matched against each others to see their similarity. Mamdani fuzzy model is used to determine similarity based matching algorithm. The proposed algorithm is applied to radar reflectivity data over time domain. We were able to observe time dependent characteristic of the clusters.

  • PDF

A Study on Acoustic Odometry Estimation based on the Image Similarity using Forward-looking Sonar (이미지 쌍의 유사도를 고려한 Acoustic Odometry 정확도 향상 연구)

  • Eunchul Yoon;Byeongjin Kim;Hangil Joe
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this study, we propose a method to improve the accuracy of acoustic odometry using optimal frame interval selection for Fourier-based image registration. The accuracy of acoustic odometry is related to the phase correlation result of image pairs obtained from the forward-looking sonar (FLS). Phase correlation failure is caused by spurious peaks and high-similarity image pairs that can be prevented by optimal frame interval selection. We proposed a method of selecting the optimal frame interval by analyzing the factors affecting phase correlation. Acoustic odometry error was reduced by selecting the optimal frame interval. The proposed method was verified using field data.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

Using Genre Rating Information for Similarity Estimation in Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.93-100
    • /
    • 2019
  • Similarity computation is very crucial to performance of memory-based collaborative filtering systems. These systems make use of user ratings to recommend products to customers in online commercial sites. For better recommendation, most similar users to the active user need to be selected for their references. There have been numerous similarity measures developed in literature, most of which suffer from data sparsity or cold start problems. This paper intends to extract preference information as much as possible from user ratings to compute more reliable similarity even in a sparse data condition, as compared to previous similarity measures. We propose a new similarity measure which relies not only on user ratings but also on movie genre information provided by the dataset. Performance experiments of the proposed measure and previous relevant measures are conducted to investigate their performance. As a result, it is found that the proposed measure yields better or comparable achievements in terms of major performance metrics.