Journal of the Korean Data and Information Science Society
/
v.17
no.3
/
pp.775-784
/
2006
This study is to investigate the effect of the number of co-rated users to the MAE. User based collaborative algorithm generally uses similarity weight to compute the relation of active user and other users. The original estimation algorithm of the GroupLens used the Pearson's correlation coefficient, soon after other researchers used various weighting. The Pearson’s correlation coefficient and Vector similarity, which is used in the field of information retrieval, are commonly used to the estimation algorithm. In prediction, we analyze the effect of the number of co-rated users on the user based recommender system.
Journal of the Korea Society of Computer and Information
/
v.26
no.11
/
pp.149-156
/
2021
Among various implementation techniques of recommender systems, collaborative filtering selects nearest neighbors with high similarity based on past rating history, recommends products preferred by them, and has been successfully utilized by many commercial sites. Accurate estimation of similarity is an important factor that determines performance of the system. Various similarity measures have been developed, which are mostly based on integrating traditional similarity measures and several indices already developed. This study suggests a similarity measure of a novel approach. It separates the common rating area between two users by the magnitude of ratings, estimates similarity for each subarea, and integrates them with weights. This enables identifying similar subareas and reflecting it onto a final similarity value. Performance evaluation using two open datasets is conducted, resulting in that the proposed outperforms the previous one in terms of prediction accuracy, rank accuracy, and mean average precision especially with the dense dataset. The proposed similarity measure is expected to be utilized in various commercial systems for recommending products more suited to user preference.
Kihoon Seong;Moonseo Park;Hyun-Soo Lee;Sae-Hyun Ji
International conference on construction engineering and project management
/
2009.05a
/
pp.883-889
/
2009
The importance of cost estimate in early stage such has been increasing due to market change and severe competition in construction industry. Because the adjustable budget is only 20% after design stage, most of the crucial decisions to influence cost is made in the early stage. However, in the early stage, the project scope is not defined completely so that estimator has inaccurate information to make critical decision. Therefore, this research suggests the cost estimate method using case-based reasoning. Case-based reasoning is appropriate for the early cost estimating, as it has the strength of rapidity and convenience in cost estimation. This research analyzes 84 actual data of public apartment on the scale of 11~15 stories. In order to extract the most similar case, at the first step this research identifies influence factors and calculates attribute similarity. In case-based reasoning, the most challenging task is determining attribute weight. At the third step, this research calculates case similarity which is aggregated attribute similarity multipled by attribute weight. Finally, extracts the most similar case which has the highest score of case similarity.
Lee, Hyo Sang;Park, Ki Soon;Jung, Sung Heuk;Choi, Seuk Keun
Journal of Korean Society for Geospatial Information Science
/
v.21
no.3
/
pp.37-46
/
2013
Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is not clearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum River catchments, Korea. Three Catchment Characteristics, Area(A)-Annual precipitation(SAAR)-SCS Curve Number(CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups (H1, H2 and H3) and the four catchments are not grouped in this study. The clustering analysis of FDC provides four Groups; F1, F2, F3 and F4. The six catchments (out of seven) of H1 are grouped in F1, while Sangyeogyo is grouped in F2. The four catchments (out of six) of H2 are also grouped in F2, while Cheongju and Guryong are grouped in F1. The catchments of H3 are categorized in F1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (F1 and F2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by clustering analysis of FDC. This study shows a potential of hydrological catchment similarity measures in Korea.
Journal of Korean Society of Industrial and Systems Engineering
/
v.36
no.2
/
pp.74-80
/
2013
In this study, a novel and flexible recommender system was developed, based on product taxonomy and usage patterns of users. The proposed system consists of the following four steps : (i) estimation of the product-preference matrix, (ii) construction of the product-preference matrix, (iii) estimation of the popularity and similarity levels for sought-after products, and (iv) recommendation of a products for the user. The product-preference matrix for each user is estimated through a linear combination of clicks, basket placements, and purchase statuses. Then the preference matrix of a particular genre is constructed by computing the ratios of the number of clicks, basket placements, and purchases of a product with respect to the total. The popularity and similarity levels of a user's clicked product are estimated with an entropy index. Based on this information, collaborative and content-based filtering is used to recommend a product to the user. To assess the effectiveness of the proposed approach, an empirical study was conducted by constructing an experimental e-commerce site. Our results clearly showed that the proposed hybrid method is superior to conventional methods.
Journal of the Institute of Electronics and Information Engineers
/
v.50
no.10
/
pp.142-149
/
2013
In general, a color of an image is represented by using red, green, and blue channels in a RGB camera system. However, only information of three channels are limited to estimate a spectral reflectance of a real scene. Because of this, the RGB camera system can not accurately represent the color. To overcome this limitation and represent an accurate color, researches to estimate the spectral reflectance by using a multi-channel camera system are being actively proceeded. Recently, a reflectance estimation method adaptively constructing a similar training set from a traditional training set according to a camera response by using a spectral similarity was introduced. However, in this method, an accuracy of the similar training set is reduced because the spectral similarity based on an average and a maximum distances was applied. In this paper, a reflectance estimation method applied a spectral similarity based on a correlation coefficient is proposed to improve the accuracy of the similar training set. Firstly, the correlation coefficient between the similar training set and the spectral reflectance obtained by Wiener estimation method is calculated. Secondly, the similar training set is constructed from the traditional training set according to the correlation coefficient. Finally, Wiener estimation method applied the similar training set is performed to estimate the spectral reflectance. To evaluate a performance of the proposed method with previous methods, experimental results are compared. As a result, the proposed method showed the best performance.
An unsupervised region based image segmentation algorithm implemented with a pyramid structure has been developed. Rather than depending on thraditional local splitting and merging of regions with a similarity test of region statistics, the algorithm identifies the homogenous and boundary regions at each level of pyramid, then the global parameters of esch class are estimated and updated with values of the homogenous regions represented at the level of the pyramid using the mixture distribution estimation. The image is then classified through the pyramid structure. Classification results obtained for both simulated and SPOT imagery are presented.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.9
/
pp.4476-4490
/
2017
The aim of image annotation is to determine labels that can accurately describe the semantic information of images. Many approaches have been proposed to automate the image annotation task while achieving good performance. However, in most cases, the semantic similarities of images are ignored. Towards this end, we propose a novel Visual-Semantic Nearest Neighbor (VS-KNN) method by collectively exploring visual and semantic similarities for image annotation. First, for each label, visual nearest neighbors of a given test image are constructed from training images associated with this label. Second, each neighboring subset is determined by mining the semantic similarity and the visual similarity. Finally, the relevance between the images and labels is determined based on maximum a posteriori estimation. Extensive experiments were conducted using three widely used image datasets. The experimental results show the effectiveness of the proposed method in comparison with state-of-the-arts methods.
One of the issues in the development of the sodium-cooled fast reactor (SFR) using transuranic (TRU) metallic fuel is the absence of criticality benchmark experiment that faithfully mocks up the nuclear characteristics of the target design for validation of the reactor core design code and its uncertainty quantification (UQ). This study aims to quantify the criticality uncertainty of a typical TRU burner with metallic fuel by using the standard upper safety limit (USL) estimation framework based on the similarity analysis of existing benchmark experiments but elaborated in two aspects:1) application of two-sided rather than one-sided tolerance interval and 2) inclusion of additional uncertainty to account for fission products and minor actinides not included in the benchmark experiments. To conduct the similarity analysis and evaluate the nuclear-data induced uncertainty, existing, well-verified computing codes were integrated, including the nuclear data sampling code SANDY, the nuclear data processing code NJOY, and the continuous-energy Monte Carlo code McCARD. Finally, using the SFR benchmark database comprising both publicly available and proprietary benchmark experiments, the criticality uncertainty of the TRU core model with metallic fuel was evaluated.
Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.