• Title/Summary/Keyword: similarity-based estimation

Search Result 145, Processing Time 0.032 seconds

The Effect of Co-rating on the Recommender System of User Base

  • Lee, Hee-Choon;Lee, Seok-Jun;Chung, Young-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.775-784
    • /
    • 2006
  • This study is to investigate the effect of the number of co-rated users to the MAE. User based collaborative algorithm generally uses similarity weight to compute the relation of active user and other users. The original estimation algorithm of the GroupLens used the Pearson's correlation coefficient, soon after other researchers used various weighting. The Pearson’s correlation coefficient and Vector similarity, which is used in the field of information retrieval, are commonly used to the estimation algorithm. In prediction, we analyze the effect of the number of co-rated users on the user based recommender system.

  • PDF

A New Similarity Measure based on Separation of Common Ratings for Collaborative Filtering

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.149-156
    • /
    • 2021
  • Among various implementation techniques of recommender systems, collaborative filtering selects nearest neighbors with high similarity based on past rating history, recommends products preferred by them, and has been successfully utilized by many commercial sites. Accurate estimation of similarity is an important factor that determines performance of the system. Various similarity measures have been developed, which are mostly based on integrating traditional similarity measures and several indices already developed. This study suggests a similarity measure of a novel approach. It separates the common rating area between two users by the magnitude of ratings, estimates similarity for each subarea, and integrates them with weights. This enables identifying similar subareas and reflecting it onto a final similarity value. Performance evaluation using two open datasets is conducted, resulting in that the proposed outperforms the previous one in terms of prediction accuracy, rank accuracy, and mean average precision especially with the dense dataset. The proposed similarity measure is expected to be utilized in various commercial systems for recommending products more suited to user preference.

COST ESTIMATE AT EARLY STAGE USING CASE-BASED REASONING

  • Kihoon Seong;Moonseo Park;Hyun-Soo Lee;Sae-Hyun Ji
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.883-889
    • /
    • 2009
  • The importance of cost estimate in early stage such has been increasing due to market change and severe competition in construction industry. Because the adjustable budget is only 20% after design stage, most of the crucial decisions to influence cost is made in the early stage. However, in the early stage, the project scope is not defined completely so that estimator has inaccurate information to make critical decision. Therefore, this research suggests the cost estimate method using case-based reasoning. Case-based reasoning is appropriate for the early cost estimating, as it has the strength of rapidity and convenience in cost estimation. This research analyzes 84 actual data of public apartment on the scale of 11~15 stories. In order to extract the most similar case, at the first step this research identifies influence factors and calculates attribute similarity. In case-based reasoning, the most challenging task is determining attribute weight. At the third step, this research calculates case similarity which is aggregated attribute similarity multipled by attribute weight. Finally, extracts the most similar case which has the highest score of case similarity.

  • PDF

Catchment Similarity Assessment Based on Catchment Characteristics of GIS in Geum River Catchments, Korea (금강 유역을 대상으로 한 GIS 기반의 유역의 유사성 평가)

  • Lee, Hyo Sang;Park, Ki Soon;Jung, Sung Heuk;Choi, Seuk Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.3
    • /
    • pp.37-46
    • /
    • 2013
  • Similarity measure of catchments is essential for regionalization studies, which provide in depth analysis in hydrological response and flood estimations at ungauged catchments. However, this similarity measure is often biased to the selected catchments and is not clearly explained in hydrological sense. This study applied a type of hydrological similarity distance measure-Flood Estimation Handbook to 25 Geum River catchments, Korea. Three Catchment Characteristics, Area(A)-Annual precipitation(SAAR)-SCS Curve Number(CN), are used in Euclidian distance measures. Furthermore, six index of Flow Duration Curve are applied to clustering analysis of SPSS. The catchments' grouping of hydrological similarity measures suggests three groups (H1, H2 and H3) and the four catchments are not grouped in this study. The clustering analysis of FDC provides four Groups; F1, F2, F3 and F4. The six catchments (out of seven) of H1 are grouped in F1, while Sangyeogyo is grouped in F2. The four catchments (out of six) of H2 are also grouped in F2, while Cheongju and Guryong are grouped in F1. The catchments of H3 are categorized in F1. The authors examine the results (H1, H2 and H3) of similarity measure based on catchment physical descriptors with results (F1 and F2) of clustering based on catchment hydrological response. The results of hydrological similarity measures are supported by clustering analysis of FDC. This study shows a potential of hydrological catchment similarity measures in Korea.

Recommender System based on Product Taxonomy and User's Tendency (상품구조 및 사용자 경향성에 기반한 추천 시스템)

  • Lim, Heonsang;Kim, Yong Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.2
    • /
    • pp.74-80
    • /
    • 2013
  • In this study, a novel and flexible recommender system was developed, based on product taxonomy and usage patterns of users. The proposed system consists of the following four steps : (i) estimation of the product-preference matrix, (ii) construction of the product-preference matrix, (iii) estimation of the popularity and similarity levels for sought-after products, and (iv) recommendation of a products for the user. The product-preference matrix for each user is estimated through a linear combination of clicks, basket placements, and purchase statuses. Then the preference matrix of a particular genre is constructed by computing the ratios of the number of clicks, basket placements, and purchases of a product with respect to the total. The popularity and similarity levels of a user's clicked product are estimated with an entropy index. Based on this information, collaborative and content-based filtering is used to recommend a product to the user. To assess the effectiveness of the proposed approach, an empirical study was conducted by constructing an experimental e-commerce site. Our results clearly showed that the proposed hybrid method is superior to conventional methods.

Spectral Reflectance Estimation based on Similar Training Set using Correlation Coefficient (상관 계수를 이용한 유사 모집단 기반의 분광 반사율 추정)

  • Yo, Ji-Hoon;Ha, Ho-Gun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.142-149
    • /
    • 2013
  • In general, a color of an image is represented by using red, green, and blue channels in a RGB camera system. However, only information of three channels are limited to estimate a spectral reflectance of a real scene. Because of this, the RGB camera system can not accurately represent the color. To overcome this limitation and represent an accurate color, researches to estimate the spectral reflectance by using a multi-channel camera system are being actively proceeded. Recently, a reflectance estimation method adaptively constructing a similar training set from a traditional training set according to a camera response by using a spectral similarity was introduced. However, in this method, an accuracy of the similar training set is reduced because the spectral similarity based on an average and a maximum distances was applied. In this paper, a reflectance estimation method applied a spectral similarity based on a correlation coefficient is proposed to improve the accuracy of the similar training set. Firstly, the correlation coefficient between the similar training set and the spectral reflectance obtained by Wiener estimation method is calculated. Secondly, the similar training set is constructed from the traditional training set according to the correlation coefficient. Finally, Wiener estimation method applied the similar training set is performed to estimate the spectral reflectance. To evaluate a performance of the proposed method with previous methods, experimental results are compared. As a result, the proposed method showed the best performance.

Adaptive Parametric Estimation and Classification of Remotely Sensed Imagery Using a Pyramid Structure

  • Kim, Kyung-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.69-86
    • /
    • 1991
  • An unsupervised region based image segmentation algorithm implemented with a pyramid structure has been developed. Rather than depending on thraditional local splitting and merging of regions with a similarity test of region statistics, the algorithm identifies the homogenous and boundary regions at each level of pyramid, then the global parameters of esch class are estimated and updated with values of the homogenous regions represented at the level of the pyramid using the mixture distribution estimation. The image is then classified through the pyramid structure. Classification results obtained for both simulated and SPOT imagery are presented.

KNN-based Image Annotation by Collectively Mining Visual and Semantic Similarities

  • Ji, Qian;Zhang, Liyan;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4476-4490
    • /
    • 2017
  • The aim of image annotation is to determine labels that can accurately describe the semantic information of images. Many approaches have been proposed to automate the image annotation task while achieving good performance. However, in most cases, the semantic similarities of images are ignored. Towards this end, we propose a novel Visual-Semantic Nearest Neighbor (VS-KNN) method by collectively exploring visual and semantic similarities for image annotation. First, for each label, visual nearest neighbors of a given test image are constructed from training images associated with this label. Second, each neighboring subset is determined by mining the semantic similarity and the visual similarity. Finally, the relevance between the images and labels is determined based on maximum a posteriori estimation. Extensive experiments were conducted using three widely used image datasets. The experimental results show the effectiveness of the proposed method in comparison with state-of-the-arts methods.

Uncertainty quantification based on similarity analysis of reactor physics benchmark experiments for SFR using TRU metallic fuel

  • YuGwon Jo;Jaewoon Yoo;Jong-Hyuk Won;Jae-Yong Lim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3626-3643
    • /
    • 2024
  • One of the issues in the development of the sodium-cooled fast reactor (SFR) using transuranic (TRU) metallic fuel is the absence of criticality benchmark experiment that faithfully mocks up the nuclear characteristics of the target design for validation of the reactor core design code and its uncertainty quantification (UQ). This study aims to quantify the criticality uncertainty of a typical TRU burner with metallic fuel by using the standard upper safety limit (USL) estimation framework based on the similarity analysis of existing benchmark experiments but elaborated in two aspects:1) application of two-sided rather than one-sided tolerance interval and 2) inclusion of additional uncertainty to account for fission products and minor actinides not included in the benchmark experiments. To conduct the similarity analysis and evaluate the nuclear-data induced uncertainty, existing, well-verified computing codes were integrated, including the nuclear data sampling code SANDY, the nuclear data processing code NJOY, and the continuous-energy Monte Carlo code McCARD. Finally, using the SFR benchmark database comprising both publicly available and proprietary benchmark experiments, the criticality uncertainty of the TRU core model with metallic fuel was evaluated.

Case-Based Reasoning Cost Estimation Model Using Two-Step Retrieval Method

  • Lee, Hyun-Soo;Seong, Ki-Hoon;Park, Moon-Seo;Ji, Sae-Hyun;Kim, Soo-Young
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Case-based reasoning (CBR) method can make estimators understand the estimation process more clearly. Thus, CBR is widely used as a methodology for cost estimation. In CBR, the quality of case retrieval affects the relevance of retrieved cases and hence the overall quality of the reminding capability of CBR system. Thus, it is essential to retrieve relevant past cases for establishing a robust CBR system. Case retrieval needs the following tasks to obtain appropriate case(s); indexing, search, and matching (Aamodt and Plaza 1994). However, the previous CBR researches mostly deal with matching process that has limits such as accuracy and efficiency of case retrieval. In order to address this issue, this research presents a CBR cost model for building projects that has two-step retrieval process: decision tree and nearest neighbor methods. Specifically, the proposed cost model has indexing, search and matching modules. Features in the model are divided into shape-based and scale-based attributes. Based on these, decision tree is established for facilitating the search task and nearest neighbor method was utilized for matching task. In regard to applying nearest neighbor method, attribute weights are assigned using GA optimization and similarity is calculated using the principle of distance measuring. Thereafter, the proposed CBR cost model is developed using 174 cases and validated using 12 test cases.