• Title/Summary/Keyword: similar material

Search Result 3,159, Processing Time 0.035 seconds

Fabrication Methods of Porous Ceramics and Their Applications in Advanced Engineering - Large Flat Precision Plate for Flat Display Industries

  • Matsumaru, Koji;Ishizaki, Kozo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.3.1-3.1
    • /
    • 2009
  • Normal sintering process of producing porous ceramics is not to sinter perfectly, i.e., stop sintering in middle-process. Our porous ceramic materials are a product of complete sintering. For example if one want to make a porous carborundum, raw carborundum powder is sintered at either lower temperatures than normal sintering temperature or shorter sintering periods than normal sintering time to obtain incompletely sintered materials, i.e., porous carborundum. This implies normally sintered porous ceramic materials can mot be used in high vacuum conditions due to dust coming out from uncompleted sintering. We could produce completely sintered porous ceramic materials. For example, we can produce porous carborundum material by using carborundum particles bonded by glassy material. The properties of this material are similar to carborundum. We could make quasi-zero thermal expansion porous material by using carborundum and particles of negative thermal expansion materials bonded by the glassy material. We apply to sinter them also by microwave to sinter quickly. We also use HIP process to introduce closed pores. We could sinter them in large size to produce $2.5m{\times}2.5m$ ceramic plate to use as a precision plate for flat display industries. This flat ceramic plate is the world largest artificial ceramic plate. Precision plates are basic importance to any advanced electronic industries. The produced precision plate has lower density, lower thermal expansivity, higher or similar damping properties added extra properties such as vacuum vise, air sliding capacity. These plates are highly recommended to use in flat display industries. We could produce also cylindrical porous ceramics materials, which can applied to precision roller for polymer film precision motion for also electronic industries.

  • PDF

Effect of the Hydrophobicity and the Surface Roughness of Support Material on the Microbial Attachment (담체의 소수성과 표면 거칠기가 미생물 부착에 미치는 영향)

  • Park, Young-Seek;Suh, Jung-Ho;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.6 no.6
    • /
    • pp.689-696
    • /
    • 1997
  • This paper discussed effect of the surface roughness and the hydrophobicity of support material on the microbial attachment In a rotating biological contactor. The by- drophoblclty of each support material was determined by the measurement of contact angle of water and the surface roughness was measured by the surface roughness In- strument. Microorganisms have well attached on the surface of more hydrophilic support material like Nylon6 than that of the hydrophobic support material like PE. When the relatively hydrophilic surface was roughen, the microbial attachment was increased but when the relatively hydrophobic surface was roughen, the attachment was slightly In- creased because the hydrophobicity of support material was Increased by roughening the hydrophobic surface. Although both variables, the surface hydrophobicity and the surface roughness, have Influenced the microbial attachment, the influence of the surface roughness overruled that of the surface hydrophobicity. Support material whose surfaces were roughened about 1mm, 6mm and 11mm were allowed for attached 3, 7 and 24hr, but the differences of maximum and minimum attachment of each material gave nearly constant values and similar trend with time.

  • PDF

Evaluation of Degradation Behavior of the Long-Term Serviced Boiler Header (장기 사용 보일러 헤더의 열화거동 평가에 관한 연구)

  • Gwon, Jae-Do;Bae, Yong-Tak;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1673-1680
    • /
    • 2000
  • The degradation of a boiler header constructed by a material, 1Cr-0.5Mo steel in a fossil power plant is observed when the header is exposed for a long period to the high temperature and pressure. The present investigations are for evaluating the effect of the degradation on the material, such as its strength changes. Reheat-treated metal is used to compare the mechanical properties of the degraded and that of reheat-treated materials. Through the investigation, following results are obtained 1) the area ratio of ferrite in the reheat-treated material is larger than that of the degraded material, 2) the hardness and tensile strength of the degraded material are lower than that of the reheat-treated material, 3) the ductile-brittle transition temperature(DBTT) increased toward high temperature region, 4) the fatigue crack growth rate(FCGR) of the degraded material is higher than that of the reheat-treated material in the region of low ΔK value while FCGR of the both materials are similar in high ΔK region.

Biomimetic Preparation of Boron Nitride /PMMA Composite (생체모방기술을 이용한 Boron Nitride /PMMA 복합체 제조)

  • Nam, Kyung Mok;Lee, Yoon Joo;Kim, Bo Yeon;Kwon, Woo Teck;Kim, Soo Ryong;Shin, Dong Geun;Kim, Young Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.103-106
    • /
    • 2014
  • Nacre is an organic-inorganic composite material; it is composed of $CaCO_3$ platelet and protein. The microstructure of nacre is a matrix that is similar to bricks and mortar. Technology inspired by nature is called biomimetic technology. In this study, to make high thermal conducting ceramic composite materials using biomimetic technology, a porous green body was prepared with BN platelets. PMMA was infiltrated into the porous green body to make a composite. The microstructure of the composite was observed with FESEM, and the thermal properties were measured. The thermal conductivity of the prepared organic-inorganic composite was 4.19 $W/m{\cdot}K$.

Universal Plasma-chemical Module for Carbon-containing Raw Materials Treatment

  • Park, Hyun-Seo;Zasypkin, I.M.
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • A universal plasma-chemical module (PChM) for the industrial processing of different hydrocarbon raw material pyrolysis was designed and tested. Laboratory investigations for the plasma-chemical method of acetylene production from natural gas and different coals were made. Similar laboratory tests on the industrial production of acetylene as a raw material for organic syn-thesis were developed using the PChM. A comparison of the suggested plasma-chemical method with the traditional process of acetylene production were carried out. The outlook of the plasma-chemical method was shown.

Electrical properties of TiO$_2$added ZnO (ZnO가 첨가된 TiO$_2$의 전기적성질)

  • 김태원;전장배;최우성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.300-302
    • /
    • 1996
  • Using the AC and DC methods we have studied th electrical properties of ZnO added TiO$_2$. The electrical conductivity of ZnO added TiO$_2$ was nearly unchanged with increasing the content of ZnO. Ac conductivity and conductance as a function of Frequency showed the similar trends. The impedance, admittance, and modulus spectrums were consistent with the results of DC conductivity.

  • PDF

A Study on the Physical Properties of Mineral Hydrate Insulation Material Mixed with Basalt Fiber

  • Park, Jae-Wan;Chu, Yong-Sik;Seo, Sung-Kwan;Jeong, Jae-Hyen
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.63-67
    • /
    • 2016
  • Mineral hydrate is a new insulation material that compensates for the defects of existing materials. Mineral hydrate is made of inorganic ingredients; therefore, it is nonflammable. The porous structure of mineral hydrate makes the material lightweight and insulating. Mineral hydrate insulation and similar products have been studied and manufactured in Korea and abroad. However, these insulation materials need to improve in terms of strength. In this study, basalt fiber was used to enhance the strength. In order to observe the property changes, compressive strength, heat conductivity, and specific gravity were measured and XRD pattern analysis was performed. These tests confirmed that basalt fiber was effective at improving the strength and lowering the heat conductivity of mineral hydrate insulation.

Studies on the durability evaluation of the Recycled Cement using Waste Cementitious Powder as Raw material. (폐미분말을 주원료로한 재생시멘트의 내구성능 평가에 관한 연구)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.3-4
    • /
    • 2015
  • Environmental load reduction and sustainable development one of the study's research into the available material is discharged, remove the coarse aggregate and fine aggregate from waste concrete and utilizing the remaining cement fine powder as an alternative raw material for limestone is the main raw material of cement developing playback cement that was the purpose. Physical over existing research and chemical quality was confirmed was evaluated for durability by promoting carbonation test, research studies on the durability evaluation insignificant. As honipyul within the aggregate differential lung fine powder increases carbonation resistance performance've found that increased sharply and, S0 showed fairly similar to the OPC. Therefore, the development within the technology research to separate fine aggregate discharge fully differential and waste fine powder is determined to be the development and use of the playback durability of the cement with the carbonation levels corresponding to the OPC if made.

  • PDF

Analysis of Residual Fatty acid of the material for Reinforcement used on Edges of Lacquer ware inlaid box with Mother-of-pearl in Chŏson Dynasty (나전칠기함(螺鈿漆器函) 모서리 보강재료(補强材料)의 잔존지방산(殘存脂肪酸) 분석(分析))

  • Yu, Hei-sun
    • Conservation Science in Museum
    • /
    • v.1
    • /
    • pp.53-59
    • /
    • 1999
  • Residual fatty acid of the basic material[Backgol] for reinforcement used on the edges of the lacquer ware inlaid box of Chosŏn Dynasty was analyzed. The result showed that it contained considerable amount of cholesterol. So it was confirmed to be animal material. Gas chromatography showed that its fatty acid composition is similar to that of sharkskin. On the basis of this analysis results, the damaged area of the object was restored by using sharkskin as a material for reinforcement.

Measurement of Mechanical Material Properties of Rubber Compounds Sampled from a Pneumatic Tire (타이어에서 채취한 고무배합물의 기계적 물성 측정)

  • 김용우;김종국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.404-409
    • /
    • 2002
  • Pneumatic tires usually contain a variety of rubber compositions, each designed to contribute some particular factor to overall performance. Rubber compounds designed for a specific function will usually be similar but not identical In composition and properties. Since 1970`s finite element analysis of tire has been performed extensively, which requires some energy density functions of rubber components of a tire. The conventional Mooney-Rivlin material model is one of the description that is commonly used in the analysis of tire. In this paper, we report the two material constants of gooney-Rivlin material model for some rubber compounds of a real pneumatic tire, which are obtained through uniaxial tension test.

  • PDF