• Title/Summary/Keyword: silicon powder

Search Result 352, Processing Time 0.019 seconds

A Study to Recover Si from End-of-Life Solar Cells using Ultrasonic Cleaning Method (초음파 세척법을 이용한 사용 후 태양광 셀로부터 Si 회수 연구)

  • Lee, Dong-Hun;Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.38-48
    • /
    • 2021
  • In this study, we determine the optimal process conditions for selectively recovering Si from a solar cell surface by removal of impurities (Al, Zn, Ag, etc.). To selectively recover Si from solar cells, leaching is performed using HCl solution and an ultrasonic cleaner. After leaching, the solar cells are washed using distilled water and dried in an oven. Decompression filtration is performed on the HCl solution, and ICP-OES (Inductively Coupled Plasma Optical Emission spectroscopy) full scan analysis is performed on the filtered solution. Furthermore, XRD (X-ray powder diffraction), XRF (X-ray fluorescence), and ICP-OES are performed on the dried solar cells after crushing, and the purity and recovery rate of Si are obtained. In this experiment, the concentration of acid solution, reaction temperature, reaction time, and ultrasonic intensity are considered as variables. The results show that the optimal process conditions for the selective recovery of Si from the solar cells are as follows: the concentration of acid solution = 3 M HCl, reaction temperature = 60℃, reaction time = 120 min, and ultrasonic intensity = 150 W. Further, the Si purity and recovery rate are 99.85 and 99.24%, respectively.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.