• Title/Summary/Keyword: silicon content

Search Result 360, Processing Time 0.026 seconds

The Effect of the Sintering Additives on the Fabrication and Thermal Conductivity of Porous Sintered RBSN

  • Park, Young-Jo;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.354-357
    • /
    • 2007
  • The nitriding and post-sintering behavior of silicon powder compact containing sintering additives of 2.3 wt% and 7 wt% were investigated in this study. Regardless of the liquid phase content, elongated large grains of a typical morphology evolved in the post-sintered specimens. Phase analysis revealed a complete phase transformation into ${\beta}-Si_3N_4$ in both porous systems. Oxynitride second phases (mellilite) precipitated in the latter, while those were free in the former containing less amount of liquid phase. The post-sintering condition that yielded a favorable microstructure for a filter application was achieved when the specimens were soaked at $1800^{\circ}C$ for 2 h. It was found that the thermal conductivity of porous $Si_3N_4$ ceramics is dominated by the porosity more than this factor is influenced by the addition of $Al_2O_3$.

Effect of Reinforcement Content on Damping Capacities for Castable Aluminum Matrix Composites Reinforced with SiC and Graphite Particles (SiC와 흑연 입자 강화 주조용 Al기지 복합재료의 진동감쇠능에 미치는 강화입자조성의 효과)

  • 최유송
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.47-58
    • /
    • 2004
  • Loss factors of A356, Mn-Cu alloy and aluminum matrix composites reinforced with $SiC_p$ and Ni-coated graphite particles at various contents have been investigated using clamped-free cantilever beam method. The loss factors of half-power bandwidth of the specimens were measured over a wide range of frequencies from 50 to 3300Hz. Among the specimens, Al-10%$SiC_p$-10%$C_p$ showed the highest loss factor at the mode I, while Mn-Cu alloy showed the highest loss factors at the modes II and III. Consequently, at the mode I the Al-10%$SiC_p$--10%$C_p$ showed the loss factor of 0.00093, which is 2.64 and 1.58 times higher than those of A356 and Mn-Cu alloy, respectively.

Effect of Process Parameters of UV Enhanced Gas Phase Cleaning on the Removal of PMMA (Polymethylmethacrylate) from a Si Substrate

  • Kwon, Sung Ku;Kim, Do Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.4
    • /
    • pp.204-207
    • /
    • 2016
  • Experimental study of UV-irradiated O2/H2 gas phase cleaning for PMMA (Polymethylmethacrylate) removal is carried out in a load-locked reactor equipped with a UV lamp and PBN heater. UV enhanced O2/H2 gas phase cleaning removes polymethylmethacrylate (PMMA) better at lower process pressure with higher content of H2. O2 gas compete for UV (184.9 nm) absorption with PMMA producing O3, O(1D) and lower dissociation of PMMA. In our experimental conditions, etching reaction of PMMA at the substrate temperature between 75℃ and 125℃ had activation energy of about 5.86 kcal/mol indicating etching was controlled by surface reaction. Above the 180℃, PMMA removal was governed by a supply of reaction gas rather than by substrate temperature.

Film Properties of Weather-Resistant Silicon/Acrylic Coating Resins of Different Compositions (고내후성 도료용 실리콘/아크릴수지의 배합비에 따른 도막물성)

  • 김성래;박형진;김명수;박홍수;김성길
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.615-622
    • /
    • 2002
  • Weather-resistant coatings were prepared by mixing a synthesized mill-base and let-down silicone/acrylic resin in weight ratios of 4 : 6, 3 : 7, and 2 : 8. The weatherability of the prepared coatings was tested. The thermal stability, general physical properties, and weatherability of the films of the coatings were improved with silicone content. Among the three mixing ratios mentioned, the ratio of 2 : 8 was the most suitable for the preparation of weather-resistant Coatings. The coatings containing 30 wt% of silicone proved to be a high weather-resistant coating.

Hydrogenation of ZnO:Al Thin Films Using Hot Filament

  • An, Il-Sin;Kim, Ok-Kyung;Lee, Chang-Hyo;Ahn, You-Shin
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.86-90
    • /
    • 2000
  • ZnO : Al films were prepared through the optimization process of aluminum content and substrate temperature in rf-magnetron sputtering. When hydrogenation was performed on these films using a hot filament method, all films showed improvement in conductivity although more conductive film showed less improvement. When the substrate temperature ($T_H$) was varied from $25^{\circ}C\;to\;300^{\circ}C$ during hydrogenation, the resistivity was reduced more at higher $T_H$ (more than 30% at $T_H=300^{\circ}C$) Thus, two methods were developed to suppress the dehydrogenation in ZnO : Al films : (1) capping with amorphous silicon thin film as a diffusion barrier, and (2) cooling during hydrogenation.

  • PDF

Acid Property and Catalytic Activity on Mordenites Treated by Hydrochloric Acid and Hydrofluoric Acid (염산 및 불산처리 모더나이트의 산특성과 촉매활성)

  • Han, Young-Taek;Ha, Baik-Hyon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1991
  • A series of samples having different $SiO_2/Al_2O_3$ ratio were prepared by treating hydrogen mordenites with boiling hydrochloric acid and with hydrofluoric acid. The acidities of these samples were measured by TPD of $NH_3$ and by pyridine adsorption using IR, and the catalytic activities and selectivities of isomerization were measured for the reaction of ortho-xylene. For the samples treated by boiling hydrochloric acid, the acidities decreased with the increasing $SiO_2/Al_2O_3$ ratio caused by the extraction of framework aluminum. The sample having the $SiO_2/Al_2O_3$ ratio or 22 showed better activity than the others. For the samples treated by hydrofluoric acid, the content of chemically binding fluorine increased with the increasing contact time of hydrofluoric acid solution. The catalytic activities decreased with the hydrofluoric acid treatment due to the decreased acid sites resulted from the extraction of aluminum and silicon as well as the hydroxyl group replacement by the fluoride ion. The slightly increasing catalytic activities, however, came from the newly created acid sites, due to the removal of surface silicon, having enhanced by the inductive effect of binding fluorin with further acid treatment.

  • PDF

Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD (플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과)

  • 김현철;이재신
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.104-111
    • /
    • 2001
  • B-doped hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared by plasma-enhanced chemical-vapor deposition in a gas mixture of $SiH_4, CH_4,\;and\; B_2H_6$. Physical and chemical properties of a-SiC:H films grown with varing the ratio of $B_2H_6/(SiH_4+CH_4)$ were characterized with various analysis methods including scanning electron microscopy (SEM), X-ray diffractometry (XRD), Raman spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, secondary ion mass spectroscopy (SIMS), UV absorption CH_4spectroscopy and electrical conductivity measurements. With the B-doping concentration, the doping efficiency and the micro-crystallinity were decreased and the film became amorphous when $B_2H_6/(SiH_4{plus}CH_4)$ was over $5{\times}10^{-3}$. The addition of $B_2H_6$ gas during deposition decreased the H content in the film by lowering the quantity of Si-C-H bonds. Consequently, the optical band gap and the activation energy of a-SiC:H films were decreased with increasing the B-doping level.

  • PDF

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

The Research on Aluminum and Silcon Nanoparticles as Anode Materials for Lithium Ion Batteries (알루미늄 실리콘 나노분말을 이용한 리튬이온전지 음극재료에 관한 연구)

  • Kim, Hyeong-Jo;Tulugan, Kelimu;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • The electrochemical performance and microstructure of Al-Si, Al-Si/C was investigated as anode for lithium ion battery. The Al-Si nano composite with 5 : 1 at% ratio was prepared by arc-discharge nano powder process. However, some of problem is occurred, when Al nano composite was synthesized by this manufacturing. The oxidation film is generated around Al-Si particles for passivating processing in the manufacture. The oxidation film interrupts electrical chemistry reaction during lithium ion insertion/extraction for charge and discharge. Because of the existence the oxidation film, Al-Si first cycle capacity is very lower than other examples. Therefore, carbon synthsized by glucose ($C_6H_{12}O_6$) was conducted to remove the oxidation film covered on the composite. The results showed that the first discharge cycle capacity of Al-Si/C is improved to 113mAh/g comparing with Al-Si (18.6mAh/g). Furthermore, XRD data and TEM images indicate that $Al_4C_3$ crystalline exist in Al-Si/C composite. In addition the Si-Al anode material, in which silicon is more contained was tested by same method as above, it was investigated to check the anode capacity and morphology properties in accordance with changing content of silicon, Si-Al anode has much higher initial discharge capacity(about 500mAh/g) than anode materials based on Aluminum as well as the morphology properties is also very different with the anode based Aluminum.

Synthesis of Silicon-Carbon by Polyaniline Coating and Electrochemical Properties of the Si-C|Li Cell

  • Doh, Chil-Hoon;Kim, Seong Il;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay Hyeok;Min, Byung Chul;Moon, Seong-In;Yun, Mun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1175-1180
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of polyaniline (PAn) coated on silicone powder. The physical and electrochemical properties of the Si-C composites were characterized by particle-size analysis, X-ray diffraction, scanning electron microscopy, and battery electrochemical tests. The average particle size of Si was increased by the coating of Pan but somewhat reduced by the carbonization to give silicone-carbon composites. The co-existence of crystalline silicone and amorphous-like carbon was confirmed by XRD analyses. SEM photos showed that the silicone particles were well covered with carbonaceous materials, depending on the PAn content. Si-C$\mid$Li cells were fabricated using the Si-C composites and tested using galvanostatic charge-discharge. Si-C$\mid$Li cells gave better electrochemical properties than Si|Li cells. Si-C$\mid$Li cells using Si-C from HCl-undoped precursor PAn showed better electrochemical properties than precursor PAn doped in HCl. The addition of an electrolyte containing 4-fluoroethylene carbonate (FEC) increased the initial discharge capacity. Also, another electrochemical test, the galvanostatic charge-discharge test with GISOC (gradual increasing of the state of charge) was carried out. Si-C(Si:PAn = 50:50 wt. ratio)|Li cell showed 414 mAh/g of reversible specific capacity, 75.7% of IIE (initial intercalation efficiency), 35.4 mAh/g of IICs (surface irreversible specific capacity).