• Title/Summary/Keyword: silicate fertilizer (SF)

Search Result 4, Processing Time 0.016 seconds

Fertilization of N and Si to Sustain Grain Yield and Growth Characteristics of Rice after Winter Greenhouse Water-melon Cropping

  • Cho, Young-Son;Jeon, Weon-Tae;Park, Chang-Young;Park, Ki-Do;Kang, Ui-Gum;Muthukumarasamy, Ramachandran
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.505-512
    • /
    • 2006
  • In Korea, silicate fertilization (SF) is being practiced every four years to enhance rice production. However, the relationship between nitrogen (N) and SF in view of growth characteristics and grain yield of rice has not been examined after watermelon cropping in plastic film house. This study was carried out to identify useful critical N and Si fertilizer levels to sustain grain yield and to improve N use efficiency for rice. The watermelon-rice cropping system has maintained for three seasons in each year from 1998 to 2001 by farmer before this experiment. Experiments on N and Si fertilization levels were evaluated with Hwayoungbyeo (Oryza sativa L.) in 2002 and 2003 at Uiryeong, Korea. The goal of this experiment was to find out the optimum N and Si levels to sustain rice yield by reducing excessive N fertilizer in watermelon-rice cropping system. Nitrogen fertilization (NF) levels were three ($0,\;57,\;114kg\;ha^{-1};0,\;50,\;100%$ of conventional NF amount) and five (0, 25, 50, 75, 100%) in 2002 and 2003, respectively, and combined with three SF levels ($70,\;130,\;180mg\;kg^{-1};100,\;150,\;200%$ which were adjusted with Si fertilizer in soil) were evaluated for the improvement of N and Si fertilization level in both years. Rice yielded 3.98-5.95 and 2.84-4.02 t/ha in 2002 and 2003, respectively. Our results showed the combinations of 50% and 100% of N with 200% level of Si produced the highest grain yield in both years, respectably. The grain yield was greatly improved in plot of N25% level when compared to conventional NF (Nl00%) in 2003. In conclusion, NF amount could be reduced about 50% compared to recommended level by specific fertilization of N and Si combination levels for rice growing and grain yield after cultivation watermelon in paddy field.

Determination and Effects of N and Si Fertilization Levels on Grain, Quality and Pests of Rice after Winter Green-house Water-melon Cropping

  • Cho Young-Son;Jeon Weon-Tae;Bae Soon-Do;Park Chang-Young;Park Ki-Do;Kang Ui-Gum;Muthukumarasamy Ramachandran
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.274-281
    • /
    • 2006
  • In Korea, rice cultivars have been changing to 'quality' rice rather than high yielding cultivars. However, more than 10% of paddy field has been changed to greenhouse in winter season for cropping of water-melon, oriental-melon, straw berry and et cetra. This experiment has been made to identify the usefulness of critical N and Si fertilization(SF) level to obtain high grain quality rice with reduced insect pest damage by N and SF combination. Before the experiment, watermelon-rice cropping system was maintained for three seasons by farmer from 1998 to 2001. The experiment of N and Si (silicate) fertilization levels was evaluated with Hwayoung-byeo (Oryza sativa L., medium-maturing variety) in 2002 and 2003 in Uiryeong, Korea. Nitrogen fertilization (NF) levels were three and five in 2002 and 2003, respectively, and three SF levels were compared for getting the valuable N/SF level in both years. TOYO-value was positively affected by Si application in N100% plot but it was negatively related with NF level. Normal grain percentage was positively related with TOYO-value and it was highest in 0N plot and Si plots in N100%. Other appearance qualities like powdered, damaged, and cracked grain, were decreased with increasing N fertilization level. SF improved appearance quality in N100% plots but no effects in other treatments. Leaf sheath related diseases were significantly decreased by SF but it was negatively related with NF. In conclusion, SF could be improve grain quality at the same yield levels of conventional fertilization and it also could be reduce the diseases damages of rice plant in all N treatments. NF treatment reduced grain quality and improved grain yield at N50% level, however NF above N50% could not get any kind of benefits. So, compared with conventional fertilizer, reduced NF level is recommended for high grain quality with reduced insect pest damage.

Composting Impacts on Soil Properties and Productivity in a Fluvio-marine Deposit Paddy Field (하해혼성 평야지 논토양의 부산물퇴비 시용효과)

  • Yang, Chang-Hyu;Kim, Byeong-Su;Yoo, Chul-Hyun;Park, Woo-Kyun;Yoo, Young-Seok;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • Objective of this research was to identify by-product composting impacts on paddy soil properties and rice yield. Research was conducted in Iksan (soil was identified as a Jeonbug series) located in Honam plain area from 2001 to 2004. Composts, such as cow manure sawdust compost(CMSC), Chicken manure sawdust compost(ChMSC) and Pig manure sawdust compost(PMSC) were treated in the reseach plots for every, 2, and 3 year term. Some physical properties, such as, soil hardness, and bulk density tended to decrease with application of compost and decreased in order of CMSC, ChMSC, and PMSC, while surface soil depth and porosity were increased in order of CMSC, PMSC, and ChMSC. Some chemical soil properties, such as organic matter, available phosphorus, available silicate, and exchangeable cations were increased with application of compost and every year application plots. Nitrogen uptake was higher in order of CMSC, ChMSC, SF, and PMSC. Nitrogen use efficiency was higher in order of CMSC, ChMSC, SF, and PMSC. Rice yields was increased in all application plot of CMSC, in every other year application plot ChMSC and PMSC compared with SF($5.07Mg\;ha^{-1}$). Also average rice yield on years were increased in all application plot of CMSC and in every other year application plot ChMSC, while decreased in all application plot of PMSC compared with SF($5.27Mg\;ha^{-1}$). Head rice ratio and perfect grain ratio on hulled rice was high in all application plot of PMSC and in every year, in every other year app lication plot of ChMSC while its lowered percentage of 10~13 caused by application of CMSC compared with SF.

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.