• Title/Summary/Keyword: silica shell

Search Result 97, Processing Time 0.025 seconds

The Effect of Casting Condition and Heat Treatment on the Mechanical Properties of AC4C Alloy Castings (AC4C 합금의 기계적 성질에 미치는 주조조건과 열처리의 영향에 관한 연구)

  • Kang, Hyo-Gyoung;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.450-461
    • /
    • 1993
  • AC4C alloy casts in the metallic mold, zircon sand mold, silica sand mold and shell mold with the pouring temperatures of 680, 710 and $740^{\circ}C$ have been investigated. The tensile strength, elongation and hardness of AC4C alloy castings have been influenced by the kind of molds used. The mechanical properties in zircon sand mold castings were greater than those in other sand mold castings, but were inferior to the properties in metallic mold castings. Eutectic Si particle size and DAS were increased in the order of metallic mold, ziron sand mold, silica sand mold and shell mold. Also, they were increased with the increase of pouring temperatures. DAS, eutectic Si particle size and grain size decreased with the increase of mechanical properties as the cooling rate increased. The eutectic Si particle size and DAS of AC4C alloy castings after T6 treatment were decreased in as-cast. The variation of eutectic Si particle size has been effected on the tensile strength, elongation and fractured surface.

  • PDF

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik;Kershner, Ryan J.;Braun, Paul V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.129-132
    • /
    • 2009
  • Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.

Synthesis of Hollow Carbon Microspheres with Mesoporous Shell and Vacant Core Structure and Their Electrochemical Properties (중간세공을 갖는 껍질로 구성된 속이 빈 마이크로 탄소입자의 합성 및 이들의 전기화학적 특성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.449-454
    • /
    • 2016
  • In this study, highly monodispersed porous carbon microcapsules with a hollow core were synthesized using polystyrene (PS) beads as a hard template. The surface of PS was first modified with polyvinylpyrollidone (PVP) for the easy attachment of inorganic silica sol. After coating the surface of PVP modified PS microspheres with SBA-16 sol, the carbon microcapsules with a hollow macroporous core were fabricated through reverse replication method by filling carbon sources in the mesopores of silica mold. The hollow carbons having a mesoporous shell structure and narrow particle size distribution could be obtained after the carbonization of carbon source and the dissolution of silica mold by HF solution. The mesoporous characteristics and electrochemical properties of hollow carbon microcapsules were characterized by XRD, SEM, TEM, $N_2$ adsorption/desorption analysis and cyclic voltammetry. They showed the high electric conductivity and capability for use as efficient electro-materials such as a supercapacitor.

Synthesis of Nano Structured Silica and Carbon Materials and Their Application (계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용)

  • Park Seungkyu;Kim Jongyun;Cho Wangoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.321-328
    • /
    • 2004
  • Nano silica ball and nano carbon ball are developed commercially by template synthesis method. Adsorption of unpleasant smelling substances such as ammonia, trimethylamine, acetaldehyde and methyl mercaptane onto nano carbon ball with hollow macroporous core/mesoporous shell structures, nano carbon ball, was investigated and compared with that onto odor adsorbent materials, activated carbon, commercially available. The adsorption and decomposition of malodor at nano carbon ball exhibited superior than those onto activated carbon. The physicochemical properties such as mesopore size distributions, large nitrogen BET specific surface area and large pore volume and decomposition of malodor were studied to interpret the predominant adsorption performance. The nano carbon ball is expected to be useful in many applications such as deodorizers, adsorbent of pollutants.

Effect of Pretreatment of Biogenic Titanium Dioxide on Photocatalytic Transformation of Chloroform (Biogenic TiO2 나노입자 전처리가 클로로포름 광분해에 미치는 영향)

  • Kwon, Sooyoul;Rorrer, Greg;Semprini, Lewis;Kim, Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • Photocatalysis using UV light and catalysts is an attractive low temperature and non-energy- intensive method for remediation of a wide range of chemical contaminants like chloroform (CF). Recently development of environmental friendly and sustainable catalytic systems is needed before such catalysts can be routinely applied to large-scale remediation or drinking water treatment. Titanium dioxide is a candidate material, since it is stable, highly reactive, and inexpensive. Diatoms are photosynthetic, single-celled algae that make a microscale silica shell with nano scale features. These diatoms have an ability to biologically fabricate $TiO_2$ nanoparticles into this shell in a process that parallels nanoscale silica mineralization. We cultivated diatoms, metabolically deposited titanium into the shell by using a two-stage photobioreactor and used this biogenic $TiO_2$ to this study. In this study we evaluated how effectively biogenic $TiO_2$ nanoparticles transform CF compared with chemically-synthesized $TiO_2$ nanoparticlesthe and effect of pretreatment of diatom-produced $TiO_2$ nanoparticles on photocatalytic transformation of CF. The rate of CF transformation by diatom-$TiO_2$ particles is a factor of 3 slower than chemically-synthesized one and chloride ion production was also co-related with CF transformation, and 79~91% of CF mineralization was observed in two $TiO_2$ particles. And the period of sonication and mass transfer due to particle size, evaluated by difference of oxygen tention does not affect on the CF transformation. Based on the XRD analysis we conclude that slower CF transformation by diatom-$TiO_2$ might be due to incomplete annealing to the anatase form.

Characteristics of Inorganic Silica-Neodymia Alloy Films as a Dielectric Layer of the Plasma Display Panel

  • Lee, Do-Kyung;Lee, Gi-Sung;Lee, Sang-Geul;Cho, Yong;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.810-813
    • /
    • 2003
  • Application of inorganic silica-neodymia alloy films grown by sputtering technology to the dielectric layer of plasma display panel (PDP) is presented. The experimental results reveal that dielectric constant of the alloy films increases with neodymia concentration. Also, the alloy films act as band rejection color filter owing to sharp absorptions originating in the intratransition within the 4f shell of the $Nd^{3+}$ ion. In the optical band pass region, the transmittances of the alloy films show higher than those of commercial glass-like dielectrics. As a result, the luminance of PDP device with the alloy dielectric layer is higher than that of device with conventional dielectrics, indicating wider color gamut and higher color purity.

  • PDF

SYNTHESIS OF SILICA-COATED Au WITH Ag, Co, Cu, AND Ir BIMETALLIC RADIOISOTOPE NANOPARTICLE RADIOTRACERS

  • Jung, Jin-Hyuck;Jung, Sung-Hee;Kim, Sang-Ho;Choi, Seong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.971-976
    • /
    • 2012
  • Silica-coated Au with Ag, Co, Cu, and Ir bimetallic radioisotope nanoparticles were synthesized by neutron irradiation, after coating $SiO_2$ onto the bimetallic particles by the sol-gel St$\ddot{o}$ber process. Bimetallic nanoparticles were synthesized by irradiating aqueous bimetallic ions at room temperature. Their shell and core diameters were recorded by TEM to be 100 - 112 nm and 20 - 50 nm, respectively. The bimetallic radioisotope nanoparticles' gamma spectra showed that they each contained two gamma-emitting nuclides. The nanoparticles could be used as radiotracers in petrochemical and refinery processes that involve temperatures that would decompose conventional organic radioactive labels.

메조기공 유기실리케이트 제조에 대한 템플레이트의 영향

  • 차국헌;조은범;김상철;조휘랑
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.49-49
    • /
    • 2002
  • A strategy for the synthesis of more stable and large periodic mesoporous organo-silica materials has been developed for the 2D hexagonal mesoporous organosilica by the core-shell approach using nonionic PEO-PLGA-PEO triblock copolymer templates. The BET surface area of the solvent-extracted hexagonal mesoporous organosilica is estimated to be 1,016 ㎡/g and the pore volume, pore diameter, and wall thickness are 1.447 ㎤/g, 65 Å, and 43 Å, respectively. More hydrophobic PLGA block than the PPO block used for templates of mesoporous silica proves to be quite effective in confining the organosilicates within the PEO phase. Reaction temperature and acid concentration of an initial solution as well as the chemical nature of the bloc k copolymer templates also demonstrate to be important experimental parameters for ordered organosilica mesophase. Moreover, the mesoporous organosilicas prepared with the PEO-PLGA-PEO block templates maintain their structural integrity for up to 25 days in boiling water at 100℃. The mesoporous materials with large pores and high hydrothermal stability prepared in this study has a potential for many applications.

  • PDF

Efficient Transdermal Penetration and Improved Stability of L-Ascorbic Acid Encapsulated in an Inorganic Nanocapsule

  • Yang, Jae-Hun;Lee, Sun-Young;Han, Yang-Su;Park, Kyoung-Chan;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.499-503
    • /
    • 2003
  • Encapsulation of L-ascorbic acid (vitamin C) within a bio-compatible layered inorganic material was achieved by coprecipitation reaction, in which the layered inorganic lattice and its intercalate of vitamin C are simultaneously formed. The nano-meter sized powders of vitamin C intercalate thus prepared was again encapsulated with silica nano-sol to form a nanoporous shell structure. This ternary nanohybrid of vitamin Clayered inorganic core-$SiO_2$ shell exhibited an enhanced storage stability and a sustained releasing of vitamin C. Furthermore, the nano-encapsulation of vitamin C with inorganic mineral was very helpful in delivering vitamin C molecules into skin through stratum corneum, facilitating transdermal penetration of vitamin C in topical application.

Preparation of Silica Microcapsules containing Water-Soluble UV Absorbers by a W/O Microemulsion Sol-Gel Process (W/O 마이크로에멀젼 졸-겔 법을 이용한 수용성 UV 흡수제를 함유한 실리카 마이크로캡슐의 제조)

  • 함경국;안복엽;석상일
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.220-220
    • /
    • 2003
  • The microencapsulation of droplets or particles within a solid shell leads to the formation of core-shell particles. Microencapsulation provides protection and controlled release of core materials such as drugs, vitamins, enzymes, perfumes, and the like. Such particles have, therefore, found a diverse range of applications in the pharmaceutical, agricultural, cosmetic, and food industries. UV absorbers are widely used for cosmetics to screen out ultra violet (UV) rays which have side effects on human skin. The absorbers are made generally from synthetic organic compounds, which can stimulate the human skins to develop allergic phenomena.

  • PDF