• Title/Summary/Keyword: silica

Search Result 5,275, Processing Time 0.053 seconds

Synthesis of Vinyl-nano Silica Ball Composite : Its Application to Clearcoat (비닐-나노실리카볼 화합물의 클리어코트 특성 연구)

  • Kim, Bong-Gyeom;Park, Gun-Hee;Lee, Yong-Hwa;Noh, Seung-Man;Lee, Jae-Woo;Park, Seung-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.670-675
    • /
    • 2010
  • Inorganic-organic hybrid material such as vinyl-nano sized silica ball was synthesized by acrylo-alkoxysilane and nano silica ball with different particle size. And then they were formulated into acrylic-melamine clearcoat. This material is fully characterized with various analytical methods and applied for strength measurement. The glossy effect, matting effect and anti-scratching properties of materials were investigated for further growth and maintenance. When the particle size of nano silica ball is 20~30 nm, the glossy retain effect was increased by 7% compared to bare acrylic-melamine clearcoat. When a commercially available silica Aerosil 200 (Hydrophilic fumed silica, average particle size 12 nm, Degussa) react with vinyl alkoxysilane vinyl-fumed silica complex form. The vinyl-fumed silica along with clearcoat increases only 2% increase at glossy retain. Nano-scratch test results also support the glossy retain effect of vinyl nano-sized silica ball in clearcoat.

Effect of Colloidal Silica on Selective Catalytic Reduction (SCR) Catalyst Activity and Thermal Stability (Colloidal Silica의 특성이 SCR 촉매의 성능 및 열적 안정성에 미치는 영향)

  • Cha, Jin-Sun;Lee, Hyung Won;Shin, Min-Chul;Jeong, Bora;Kim, Hong-Dae
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, the effect of characteristics of colloidal silica, which was used as an additive in the compression/coating catalyst process, on activities and thermal stabilities of the catalysts was investigated. The shape, size, specific surface area and porosity, and composition of four different types of colloidal silica materials were analyzed, and the NOx conversion of V2O5/TiO2 catalyst prepared by these colloidal silica were studied. Properties of the catalysts prepared by colloidal silica depend on the nature of the colloidal silica used, in particular the alkaline substances such as Na in the silica were evaluated to be directly effect on the deNOx conversion of the catalyst. In addition, higher silica contents in the colloidal silica were found to improve the deNOx activity and thermal stability of the catalyst.

Inducible Nitric Oxide Synthase mRNA Expression and Nitric Oxide Production in Silica-Induced Acute Inflammatory Lung Injury

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.233-239
    • /
    • 1998
  • Stimulated alveolar macrophages and neutrophils produce nitric oxide, a free radical by an inducible nitric oxide synthase(iNOS), which reacts with superoxide anion to form peroxynitrite, a more highly reactive toxic species. The objectives of the present study were to evaluate acute inflammatory lung injury and to determine iNOS mRNA induction and nitric oxide production by rat broncho-alveolar lavage cells following intratracheal treatment of silica. After 4 h exposure to silica, differential counts of broncho-alveolar lavage cells and lactate dehydrogenase(LDH) activity as well as total protein in the broncho-alveolar lavage fluid were determined. Broncho-alveolar lavage cells were also assayed for iNOS mRNA and the productions of nitrite and nitrate measured in the cells cultured. Differential analysis of broncho-alveolar lavage cells showed that the number of alveolar macrophages slightly decreased following silica treatment; however, red blood cells, lymphocytes, and neutrophils significantly were increased by 9-, 14-, and 119-fold following silica treatment, respectively, compared with the saline control. It was also found significant increases in the LDH activity and total protein in the lavage fluid obtained from silica-treated rats, indicating silica-induced acute lung injury. Northern blot analysis demonstrated that the steady state levels of iNOS mRNA in broncho-alveolar lavage cells were increased following silica treatment. The productions of nitrite and nitrate in the cultured cells were significantly increased by 2-fold following silica treatment, respectively, which were attenuated by the NOS inhibitor $N{\omega}-nitro-L-arginine-methyl$ ester(L-NAME) and partially reversed by L-arginine. These findings suggest that nitric oxide production in alveolar macrophages and recruited neutrophils is increased in response to silica. Nitric oxide may contribute in part to acute inflammatory lung injury.

  • PDF

Influence of Surface Characteristics of Mesoporous Silica on Pb(II) and Cd(II) Adsorption Behavirous (Mesoporous silica의 표면특성이 Pb(II)와 Cd(II)의 흡착거동에 미치는 영향)

  • Lee, Ha-Young;Lee, Kamp-Du;Park, Sang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.673-679
    • /
    • 2008
  • In this study, Mesoporous silica were prepared from hydrothermal synthesis using gel mixture of tetraethylorthosilcate (TEOS) as silica source and cetyltrimethylammonium bromide(CTMABr) as a template. In the optimum synthesis cause, molar ratio of template and silica changed. The surface and structure properties of Mesoporous silica were determined by XRD, SEM, and BET. N$_2$ adsorption isotherm characteristics, including the specific surface area(S$_{BET}$), total pore volume(V$_T$), and average pore diameter(D$_{BJH}$), were determined by BET. Also, the adsorption character of Pb(II) and Cd(II) ion on Mesoporous silica were measured using ICP. As a result, a SBET of 100$\sim$1,500 m$^2$/g was determined from the N$_2$ adsorption isotherm. Also, the average pore diameter of 2$\sim$4 nm. The adsorption of Pb ion and Cd ion on Mesoporous silica become different depending on the pH of solution. The adsorption amount of Mesoporus silica had higher than that of silicagel.

Gas Permeation Characteristics of Silica Membrane Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법에 의해 합성한 실리카 막의 기체 투과 특성)

  • Lee Kew-Ho;Youn Min-Young;Park Sang-Jin;Lee Dong-Wook;Sea Bongkuk
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.105-113
    • /
    • 2005
  • Silica membranes were prepared on a porous metal sheet by ultrasonic spray pyrolysis method for gas separation at high temperatures. In order to improve the permselectivity, silica was deposited in the sol-gel derived $silica/\gamma-alumina$ intermediate layer by pyrolysis of tetraethyl orthosilicate (TEOS) at 873 K. The pyrolysis with forced cross flow through the porous wall of the support was very effective in plugging mesopores, Knudsen diffusion regime, that were left unplugged in the membranes. At permeation temperature of 523 K, the silica/alumina composite membrane showed $H_2/N_2$ and water/methanol selectivity as high as 17 and 16, respectively, by molecular sieve effect.

Pure inorganic protective silica coating on stainless steel prepared at low heat treatment temperature

  • Hwang, Tae-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.6.2-6.2
    • /
    • 2010
  • Stainless steel is widely known to have superior corrosion properties. However, in some harsh conditions it still suffers various kinds of corrosions such as galvanic corrosion, pitting corrosion, intergranular corrosion, chloride stress corrosion cracking, and etc. For the corrosion protection of stainless steel, the ceramic coatings such as protective silica film can be used. The sol-gel coating technique for the silica film has been extensively studied especially because of the cost effectiveness. It has been proved that silica can improve the oxidation and the acidic corrosion resistance of metal surface in a wide range of temperatures due to its high heat and chemical resistance. However, in the sol-gel coating process there used to engage a heat treatment at an elevated temperature like $500^{\circ}C{\sim}600^{\circ}C$ where cracks in the silica film would be formed because of the thermal expansion mismatch with the metal. The cracks and pores of the film would deteriorate the corrosion resistance. When the heat treatment temperature is reduced while keeping the adhesion and the density of the film, it could possibly give the enhanced corrosion resistance. In this respect, inorganic protective silica film was tried on the surface of stainless steel using a sol-gel chemical route where silica nanoparticles, tetraethoxysilane (TEOS) and methyltriethoxysilane (MTES) were used. Silica nanoparticles with different sizes were mixed and then the film was deposited on the stainless steel substrate. It was intended by mixing the small and the large particles at the same time a sufficient consolidation of the film is possible because of the high surface activity of the small nanoparticles and a modest silica film is obtained with a low temperature heat treatment at as low as $200^{\circ}C$. The prepared film showed enhanced adhesion when compared with a silica film without nanoparticle addition. The films also showed improved protect ability against corrosion.

  • PDF

Morphology of Silica bodies on Cyperaceae in Korea (한국산 사초과(Cyperaceae) 식물의 규소체(Silica body) 형태에 의한 분류)

  • Oh, Yong Cha
    • Korean Journal of Plant Taxonomy
    • /
    • v.35 no.4
    • /
    • pp.313-335
    • /
    • 2005
  • Many plants take up soluble silica from the soil, and they deposit in plant tissues. Silica bodies are most commonly found in the leaf epidermis. Silica body is important factor in growth and development of plant. It help to maintain rigidity in stem and linear leaves, and its content may be correlated with resistance to fungal disease. In this study, several morphologically distinctive forms of silica bodies on Cyperaceae in Korea are recognized, which are eventually classified into two groups. Silica body type of first group (Rhynchospora, Fuirena, Scleria, Carex, Eriophorum) is A-type, which is conical in shape. Silica body type of second group (Cyperus, Scirpus, Eleocharis, Fimbristylis, Kyllinga, Bulbostylis, Lipocarpha) is B-type, which is conical in shape with numerous satellite body. These types are consistent enough to use as characters in taxonomic studies within genus. Silica body type may be associated with habitat: the species in dry region have A-type, whereas the species in wet region have B-type. These results suggested that shapes and presence or absence of silica body might be valuable to systematic analysis.

The use of artificial neural networks in predicting ASR of concrete containing nano-silica

  • Tabatabaei, Ramin;Sanjaria, Hamid Reza;Shamsadini, Mohsen
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.739-748
    • /
    • 2014
  • In this article, by using experimental studies and artificial neural network has been tried to investigate the use of nano-silica as concrete admixture to reduce alkali-silica reaction. If there are reactive aggregates and alkali of cement with enough moisture in concrete, a gel will be formed. Then with high reactivity between alkali of cement and existence of silica in aggregates, this gel will expand by absorption of water, and causes expansive pressure and cracks be formed. At the time passes, this gel will reduce both durability and strength of the concrete. By reducing the size of silicate to nano, specific surface area of particles and number of atoms on the surface will be increased, which causes more pozzolanic activity of them. Nano-silica can react with calcium hydroxide ($Ca(OH)_2$) and produces C-S-H gel. In this study, accelerated mortar bar specimens according to ASTM C 1260 and ASTM C 1567, with different mix proportions were prepared using aggregates of Kerman, such as: none admixture and plasticizer, different proportions of nano-silica separately. By opening the moulds after 24 hour and curing in water at $80^{\circ}C$ for 24 hour, then curing in (1N NaOH) at $80^{\circ}C$ for 14 days, length expansion of mortar bars were measured and compared. It was noted that, the lowest length expansion of a specimens shows the best proportion of admixture based on alkali-silica reactivity. Then, prediction of alkali-silica reaction of concrete has been investigated by using artificial neural network. In this study the backpropagation network has been used and compared with different algorithms to train network. Finally, the best amount of nano silica for adding to mix proportion, also the best algorithm and number of neurons in hidden layer of artificial neural network have been offered.

Titanized or Zirconized Porous Silica Modified with a Cellulose Derivative as New Chiral Stationary Phases

  • Seo, You-Jin;Kang, Gyoung-Won;Park, Seong-Tae;Moon, Myeong-Hee;Park, Jung-Hag;Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.999-1004
    • /
    • 2007
  • Spherical porous silica supports modified with titanium or zirconium alkoxides were prepared, and allyl groups were chemically attached to the titanized or zirconized silica supports, and the product was cross-polymerized with a double bond containing cellulose derivative to yield new CSPs (chiral stationary phases). Magic angle spinning 13C solid state NMR and elemental analysis were used to characterize the CSPs. The performances of the chiral stationary phases were examined in comparison with a conventional chiral stationary phase. Spherical porous silica particles modified with 3,5-dimethylphenylcarbamate of cellulose were prepared and used as the conventional chiral stationary phase. Chromatographic data were collected for a few pairs of enantionmers in heptane/2-propanol mixed solvents of various compositions with the three chiral columns and the results were comparatively studied. The separation performance of the chrial phase made of the titanized silica was better than the others, and the separation performance of the chiral phase of the zirconized silica was comparable to that of the conventional chiral phase. The superiority of titanized silica over bare or zirconized silica in chiral separation seemed to be owing to the better yield of crosslinking (monitored by increase of carbon load) for titanized silica than for the others.

Fracture behavior of fly ash concrete containing silica fume

  • Zhang, Peng;Gao, Ji-Xiang;Dai, Xiao-Bing;Zhang, Tian-Hang;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • v.59 no.2
    • /
    • pp.261-275
    • /
    • 2016
  • Effect of silica fume on fresh properties, compressive strength at 28 days and fracture behavior of fly ash concrete composite were studied in this paper. Test results indicated that the fluidity and flowability of fly ash concrete composites decreased and fly ash concrete composite are more cohesive and appear to be sticky with the addition of silica fume. Addition of silica fume was very effective in improving the compressive strength at 28 days of fly ash concrete composite, and the compressive strength of fly ash concrete composite has a trend of increase with the increase of silica fume content. Results also indicated that all the fracture parameters of effective crack length, fracture toughness, fracture energy, the critical crack opening displacement and the maximum crack opening displacement of fly ash concrete composite decreased with the addition of silica fume. When the content of silica fume increased from 3% to 12%, these fracture parameters decreased gradually with the increase of silica fume content. Furthermore, silica fume had great effect on the relational curves of the three-point bending beam specimen. As the silica fume content increased from 3% to 12%, the areas surrounded by the three relational curves and the axes were becoming smaller and smaller, which indicated that the capability of concrete composite containing fly ash to resist crack propagation was becoming weaker and weaker.