Journal of the Korean Society for Precision Engineering
/
v.25
no.7
/
pp.103-110
/
2008
This paper presents a new approach of recognizing a 3D object using a single camera, based on the extended convex hull of its silhouette. It aims at minimizing the DB size and simplifying the processes for matching and feature extraction. For this purpose, two concepts are introduced: extended convex hull and measurable region. Extended convex hull consists of convex curved edges as well as convex polygons. Measurable region is the cluster of the viewing vectors of a camera represented as the points on the orientation sphere from which a specific set of surfaces can be measured. A measurable region is represented by the extended convex hull of the silhouette which can be obtained by viewing the object from the center of the measurable region. Each silhouette is represented by a relation graph where a node describes an edge using its type, length, reality, and components. Experimental results are included to show that the proposed algorithm works efficiently even when the objects are overlapped and partially occluded. The time complexity for searching the object model in the database is O(N) where N is the number of silhouette models.
Journal of Institute of Control, Robotics and Systems
/
v.14
no.2
/
pp.178-183
/
2008
Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.
In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.
Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.
Journal of information and communication convergence engineering
/
v.11
no.2
/
pp.124-131
/
2013
Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.
The extraction and recognition of human motion characteristics need to combine biometrics to determine and judge human behavior in the movement and distinguish individual identities. The so-called biometric technology, the specific operation is the use of the body's inherent biological characteristics of individual identity authentication, the most noteworthy feature is the invariance and uniqueness. In the past, the behavior recognition technology based on the single characteristic was too restrictive, in this paper, we proposed a mixed feature which combined global silhouette feature and local optical flow feature, and this combined representation was used for human action recognition. And we will use the KTH database to train and test the recognition system. Experiments have been very desirable results.
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.192-195
/
2008
본 논문에서는 발전하는 3D 그래픽스 기술을 이용하여 문화재의 도면 실루엣을 생성하는 방법을 제안하고자 한다. 3D 스캐너로 정밀 실측된 3D 데이터를 이용하여 문화재의 도면을 생성하기 위한 벡터 실루엣(Silhouette) 추출 과정은 다음과 같다. 먼저 실측된 3D 데이터를 정규화 된 3D공간으로 이동하고, 이동 후에는 데이터에 존재하는 모든 에지(edge)를 검출하여 에지리스트(edge list)를 생성한다. 생성된 에지리스트는 다시 윤곽에지(Contour edge)와 주름에지(Crease edge)로 분류하는데, 윤곽에지는 문화재의 윤곽 실루엣을 형성하는데 이용하고, 윤곽에지를 제외한 주름에지는 문화재의 표면 특징을 나타내는 내부문양 실루엣을 형성하는데 이용한다. 내부문양 실루엣은 사용자가 입력하는 임계값과 주름에지를 구성하는 두면의 방향 벡터의 내적을 비교하여 추출한다. 추출한 벡터 실루엣은 윤곽 실루엣과 내부문양 실루엣으로 구분되며, 두 벡터 실루엣을 이용함으로써 문화재의 구조적 해석과 표면의 특징을 해석할 수 있는 도면 실루엣 생성이 가능했다.
Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
Journal of Electrical Engineering and Technology
/
v.9
no.6
/
pp.2118-2125
/
2014
Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.
The fast extraction of the silhouettes of a model is very useful for many applications in computer graphics and animation. In this paper, we present an efficient algorithm to compute a sequence of perspective silhouettes for a polyhedral model from a moving viewpoint. The viewpoint is assumed to move along a trajectory q(t), which is a space curve of a time parameter t. Then, we can compute the time-intervals for each edge of the model to be contained in the silhouette by two major computations: (i) intersecting q(t) with two planes and (ii) a number of dot products. If q(t) is a curve of degree n, then there are at most of n + 1 time-intervals for an edge to be in a silhouette. For each time point $t_i$ we can extract silhouette edges by searching the intervals containing $t_i$ among the computed intervals. For the efficient search, we propose two kinds of data structures for storing the intervals: an interval tree and an array. Our algorithm can be easily extended to compute the parallel silhouettes with minor modifications.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.5
/
pp.1856-1869
/
2015
This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.