• Title/Summary/Keyword: silhouette extraction

Search Result 29, Processing Time 0.035 seconds

Robust Recognition of 3D Object Using Attributed Relation Graph of Silhouette's (실루엣 기반의 관계그래프 이용한 강인한 3차원 물체 인식)

  • Kim, Dae-Woong;Baek, Kyung-Hwan;Hahn, Hern-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.103-110
    • /
    • 2008
  • This paper presents a new approach of recognizing a 3D object using a single camera, based on the extended convex hull of its silhouette. It aims at minimizing the DB size and simplifying the processes for matching and feature extraction. For this purpose, two concepts are introduced: extended convex hull and measurable region. Extended convex hull consists of convex curved edges as well as convex polygons. Measurable region is the cluster of the viewing vectors of a camera represented as the points on the orientation sphere from which a specific set of surfaces can be measured. A measurable region is represented by the extended convex hull of the silhouette which can be obtained by viewing the object from the center of the measurable region. Each silhouette is represented by a relation graph where a node describes an edge using its type, length, reality, and components. Experimental results are included to show that the proposed algorithm works efficiently even when the objects are overlapped and partially occluded. The time complexity for searching the object model in the database is O(N) where N is the number of silhouette models.

Feature Extraction Based on Hybrid Skeleton for Human-Robot Interaction (휴먼-로봇 인터액션을 위한 하이브리드 스켈레톤 특징점 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.178-183
    • /
    • 2008
  • Human motion analysis is researched as a new method for human-robot interaction (HRI) because it concerns with the key techniques of HRI such as motion tracking and pose recognition. To analysis human motion, extracting features of human body from sequential images plays an important role. After finding the silhouette of human body from the sequential images obtained by CCD color camera, the skeleton model is frequently used in order to represent the human motion. In this paper, using the silhouette of human body, we propose the feature extraction method based on hybrid skeleton for detecting human motion. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Robust Human Silhouette Extraction Using Graph Cuts (그래프 컷을 이용한 강인한 인체 실루엣 추출)

  • Ahn, Jung-Ho;Kim, Kil-Cheon;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • In this paper we propose a new robust method to extract accurate human silhouettes indoors with active stereo camera. A prime application is for gesture recognition of mobile robots. The segmentation of distant moving objects includes many problems such as low resolution, shadows, poor stereo matching information and instabilities of the object and background color distributions. There are many object segmentation methods based on color or stereo information but they alone are prone to failure. Here efficient color, stereo and image segmentation methods are fused to infer object and background areas of high confidence. Then the inferred areas are incorporated in graph cut to make human silhouette extraction robust and accurate. Some experimental results are presented with image sequences taken using pan-tilt stereo camera. Our proposed algorithms are evaluated with respect to ground truth data and proved to outperform some methods based on either color/stereo or color/contrast alone.

Depth Images-based Human Detection, Tracking and Activity Recognition Using Spatiotemporal Features and Modified HMM

  • Kamal, Shaharyar;Jalal, Ahmad;Kim, Daijin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1857-1862
    • /
    • 2016
  • Human activity recognition using depth information is an emerging and challenging technology in computer vision due to its considerable attention by many practical applications such as smart home/office system, personal health care and 3D video games. This paper presents a novel framework of 3D human body detection, tracking and recognition from depth video sequences using spatiotemporal features and modified HMM. To detect human silhouette, raw depth data is examined to extract human silhouette by considering spatial continuity and constraints of human motion information. While, frame differentiation is used to track human movements. Features extraction mechanism consists of spatial depth shape features and temporal joints features are used to improve classification performance. Both of these features are fused together to recognize different activities using the modified hidden Markov model (M-HMM). The proposed approach is evaluated on two challenging depth video datasets. Moreover, our system has significant abilities to handle subject's body parts rotation and body parts missing which provide major contributions in human activity recognition.

Silhouette-Edge-Based Descriptor for Human Action Representation and Recognition

  • Odoyo, Wilfred O.;Choi, Jae-Ho;Moon, In-Kyu;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Extraction and representation of postures and/or gestures from human activities in videos have been a focus of research in this area of action recognition. With various applications cropping up from different fields, this paper seeks to improve the performance of these action recognition machines by proposing a shape-based silhouette-edge descriptor for the human body. Information entropy, a method to measure the randomness of a sequence of symbols, is used to aid the selection of vital key postures from video frames. Morphological operations are applied to extract and stack edges to uniquely represent different actions shape-wise. To classify an action from a new input video, a Hausdorff distance measure is applied between the gallery representations and the query images formed from the proposed procedure. The method is tested on known public databases for its validation. An effective method of human action annotation and description has been effectively achieved.

Human Action Recognition Based on An Improved Combined Feature Representation

  • Zhang, Ning;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1473-1480
    • /
    • 2018
  • The extraction and recognition of human motion characteristics need to combine biometrics to determine and judge human behavior in the movement and distinguish individual identities. The so-called biometric technology, the specific operation is the use of the body's inherent biological characteristics of individual identity authentication, the most noteworthy feature is the invariance and uniqueness. In the past, the behavior recognition technology based on the single characteristic was too restrictive, in this paper, we proposed a mixed feature which combined global silhouette feature and local optical flow feature, and this combined representation was used for human action recognition. And we will use the KTH database to train and test the recognition system. Experiments have been very desirable results.

Vector Silhouette Extraction for Creating a Blueprint of Cultural Assets (문화재의 도면 생성을 위한 벡터 실루엣 추출)

  • Jung-Il Jung;Jinsoo Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.192-195
    • /
    • 2008
  • 본 논문에서는 발전하는 3D 그래픽스 기술을 이용하여 문화재의 도면 실루엣을 생성하는 방법을 제안하고자 한다. 3D 스캐너로 정밀 실측된 3D 데이터를 이용하여 문화재의 도면을 생성하기 위한 벡터 실루엣(Silhouette) 추출 과정은 다음과 같다. 먼저 실측된 3D 데이터를 정규화 된 3D공간으로 이동하고, 이동 후에는 데이터에 존재하는 모든 에지(edge)를 검출하여 에지리스트(edge list)를 생성한다. 생성된 에지리스트는 다시 윤곽에지(Contour edge)와 주름에지(Crease edge)로 분류하는데, 윤곽에지는 문화재의 윤곽 실루엣을 형성하는데 이용하고, 윤곽에지를 제외한 주름에지는 문화재의 표면 특징을 나타내는 내부문양 실루엣을 형성하는데 이용한다. 내부문양 실루엣은 사용자가 입력하는 임계값과 주름에지를 구성하는 두면의 방향 벡터의 내적을 비교하여 추출한다. 추출한 벡터 실루엣은 윤곽 실루엣과 내부문양 실루엣으로 구분되며, 두 벡터 실루엣을 이용함으로써 문화재의 구조적 해석과 표면의 특징을 해석할 수 있는 도면 실루엣 생성이 가능했다.

Secured Authentication through Integration of Gait and Footprint for Human Identification

  • Murukesh, C.;Thanushkodi, K.;Padmanabhan, Preethi;Feroze, Naina Mohamed D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2118-2125
    • /
    • 2014
  • Gait Recognition is a new technique to identify the people by the way they walk. Human gait is a spatio-temporal phenomenon that typifies the motion characteristics of an individual. The proposed method makes a simple but efficient attempt to gait recognition. For each video file, spatial silhouettes of a walker are extracted by an improved background subtraction procedure using Gaussian Mixture Model (GMM). Here GMM is used as a parametric probability density function represented as a weighted sum of Gaussian component densities. Then, the relevant features are extracted from the silhouette tracked from the given video file using the Principal Component Analysis (PCA) method. The Fisher Linear Discriminant Analysis (FLDA) classifier is used in the classification of dimensional reduced image derived by the PCA method for gait recognition. Although gait images can be easily acquired, the gait recognition is affected by clothes, shoes, carrying status and specific physical condition of an individual. To overcome this problem, it is combined with footprint as a multimodal biometric system. The minutiae is extracted from the footprint and then fused with silhouette image using the Discrete Stationary Wavelet Transform (DSWT). The experimental result shows that the efficiency of proposed fusion algorithm works well and attains better result while comparing with other fusion schemes.

Extracting Silhouettes of a Polyhedral Model from a Curved Viewpoint Trajectory (곡선 궤적의 이동 관측점에 대한 다면체 모델의 윤곽선 추출)

  • Kim, Gu-Jin;Baek, Nak-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2002
  • The fast extraction of the silhouettes of a model is very useful for many applications in computer graphics and animation. In this paper, we present an efficient algorithm to compute a sequence of perspective silhouettes for a polyhedral model from a moving viewpoint. The viewpoint is assumed to move along a trajectory q(t), which is a space curve of a time parameter t. Then, we can compute the time-intervals for each edge of the model to be contained in the silhouette by two major computations: (i) intersecting q(t) with two planes and (ii) a number of dot products. If q(t) is a curve of degree n, then there are at most of n + 1 time-intervals for an edge to be in a silhouette. For each time point $t_i$ we can extract silhouette edges by searching the intervals containing $t_i$ among the computed intervals. For the efficient search, we propose two kinds of data structures for storing the intervals: an interval tree and an array. Our algorithm can be easily extended to compute the parallel silhouettes with minor modifications.

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.