• Title/Summary/Keyword: silanes

Search Result 68, Processing Time 0.026 seconds

Fabrication and characterization of solution processable organosilane-modified colloidal titania nanoparticles and silica-titania hybrid films

  • Kang, Dong Jun;Park, Go Un;Lee, Hyeon Hwa;Ahn, Myeong Sang;Park, Hyo Yeol
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.78-81
    • /
    • 2012
  • Colloidal titania nanoparticles were synthesized by a simple sol-gel process. The obtained nanoparticles showed high crystallinity and were of the anatase type. These crystalline colloidal titania nanoparticles were organically modified using methyl- and glycidyl-grafted silanes in order to enhance their stability and solution processability. The stabilized colloidal titania nanoparticles could be dispersed homogeneously without aggregation and converted into silica-titania hybrid films with the heterogeneous Si-O-Ti bonds by a low-temperature solution process. The fabricated silica-titania hybrid films showed high transparency (~ 90%) in the visible range, and low RMS roughness (<1 nm). Therefore, the organosilane-modified crystalline colloidal titania nanoparticles can be used in solution-processable functional coatings for electro-optical devices.

Effects of Silane Structure on Composite Interaction Parameter (αC)) of Silica Filled Rubber Compounds (실란 구조가 실리카 복합소재 내 구조발달 상호계수(αC)에 미치는 영향)

  • Kim, Sung Min;Kim, Kwang Jea
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.411-416
    • /
    • 2014
  • Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (${\alpha}_F$) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (${\alpha}_C$), which included Wolff's filler-filler interaction parameter (${\alpha}_F$), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound ${\alpha}_C$ (= ${\alpha}_F+{\alpha}_{FP}$(filler-silane-rubber interaction parameter) + ${\alpha}_P$ (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the ${\alpha}_C$ value of each compound was measured and calculated. The ${\alpha}_C$ value of TESPT treated silica filled compound was 1.64, which composed of ${\alpha}_F$ (0.99), ${\alpha}_{FP}$ (0.31), and ${\alpha}_P$ (0.34).

The Study of Water Stability of MDF Cement Composite by Addition of Silane Coupling Agent (Silane Coupling Agent 첨가에 의한 MDF Cement Composite의 수분안정성 연구)

  • 노준석;김진태;박춘근;오복진;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.5
    • /
    • pp.421-428
    • /
    • 1998
  • The effect of silane coupling agents on the water stability of HAC/PVA based MDF cement composites which were modified with urethane and epoxy resin were studied as a function of the functional groups and addition amount of silane coupling agent. According to the composition of polymer matrix the silanes with different functional groups showed the different effectiveness. In case of the only PVA matrix the silane with vinyl functional group was more effective than other silanes. When the epoxy resin was added the silane of epoxy-methodxy group enhanced the flexural strength of dry and wet state more than other. In case of urethane-added MDF cement the silane of diamine group was effective and enhanced the water sta-bility fo MDF cement composite more and more as the addition amount of silane increased, Especially in case of warm-presed composite the effect of silane was enhanced By addition of 2wt% of silane with 야-amine group the flexural strength of urethane-added composites were enhanced by 20% more in dry state 40-70% in wet state in accord with the porosity analysis. The flexural strength of the poxy resin-added MDF cement composite was increased by addition of 1wt% and 2wt% silane of epoxy-methoxy group However the addition of 4wt% of silane decreased the flexural strength of dry and wet state by formation of closed pore in the polymer matrix.

  • PDF

Prediction of Affinity between Membrane and Esters Using Solubility Parameter (용해도 파라미터에 의한 막과 esters 간의 친화도 예측)

  • Song, Kun-Ho;Lee, Kwang-Rae
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.484-490
    • /
    • 2014
  • To find out the feasibility of the separating/enriching esters from aqueous solution using FASs (Fluoloalkyl-silanes-coupling agent)-surface modified hydrophobic membrane, the solubility parameter of FASs was obtained and compared with those of esters and water. The value of the solubility parameter of FASs (${\delta}_t=16.9$) was almost same with those of esters (ethyl acetate ${\delta}_t=18.1$, propyl acetate ${\delta}_t=18.0$, ethyl propionate ${\delta}_t=17.9$, butyl acetate ${\delta}_t=17.4$, ethyl butyrate ${\delta}_t=17.0$). However, the calculated value of the solubility parameter of water was ${\delta}_t=47.8$, which was far from the value of the solubility parameter of FASs (${\delta}_t=16.9$). This means that the FASs-modified membrane has a much higher affinity to esters than water. The experimental results of permeation flux of esters used in this study showed that the order of permeation flux predicted by the solubility parameter was almost coincide with experimental results. It might be concluded that the solubility parameter may be applicable for a separating/enriching flavors from aqueous natural-flavor solution, in which esters are main components of natural flavors.

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

A Study on Silane Crosslinking Process of Polypropylene for Enhanced Impact Strength (실란 가교 반응을 이용한 폴리프로필렌의 충격강도 향상에 관한 연구)

  • Kang, Min-Soo;Park, Sung-Ho;Kim, Ki-Sung;Bae, Jong-Rak;Jeon, Oh-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.69-73
    • /
    • 2010
  • The melt grafting of unsaturated silanes onto polypropylene (PP) in a twin-screw extruder and crosslinking in hot water were studied to enhance impact strength of polypropylene. The influence of grafting formulations on the melt flow rates of grafted PP and the gel percentages of crosslinked PP was investigated. 3-methacryloylpropyltrimethoxysilane (VMMS) unsaturated silane monomer was used. Benzoyl peroxide, (BPO) and Dicumyl peroxide (DCP) were used as an initiator. When benzoyl peroxide (BPO) was used as an initiator, higher gel percentage and impact strength than those of DCP has been observed. The maximum impact strength was obtained with 0.7 phr of BPO and 2phr of VMMS. The value is 8.7 kgf-cm/cm and it is on a parity with the value of with 20 phr of EOR mixed to PP.

Control of Surface Chemistry and Electrochemical Performance of Carbon-coated Silicon Anode Using Silane-based Self-Assembly for Rechargeable Lithium Batteries

  • Choi, Hyun;Nguyen, Cao Cuong;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2519-2526
    • /
    • 2010
  • Silane-based self-assembly was employed for the surface modification of carbon-coated Si electrodes and their surface chemistry and electrochemical performance in battery electrolyte depending on the molecular structure of silanes was studied. IR spectroscopic analyses revealed that siloxane formed from silane-based self-assembly possessed Si-O-Si network on the electrode surface and high surface coverage siloxane induced the formation of a stable solid-electrolyte interphase (SEI) layer that was mainly composed of organic compounds with alkyl and carboxylate metal salt functionalities, and PF-containing inorganic species. Scanning electron microscopy imaging showed that particle cracking were effectively reduced on the carbon-coated Si when having high coverage siloxane and thickened SEI layer, delivering > 1480 mAh/g over 200 cycles with enhanced capacity retention 74% of the maximum discharge capacity, in contrast to a rapid capacity fade with low coverage siloxane.

Properties of Sol-gel Coating Materials Synthesized from Colloidal Silicas and Methyltrimethoxysilane (Colloidal Silica와 Methyltrimethoxysilane간의 졸겔반응으로 합성된 코팅제 특성 연구)

  • 강동필;박효열;안명상;이태희;명인혜;강귀태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.967-972
    • /
    • 2004
  • Hardness and surface property of coated gel materials are considerably different according to kinds(particle size/stabilized ion) of colloidal silica(CS), kinds of silanes, content ratio of silane versus CS, and reaction degree in sol solution. We report the properties of sol-gel coating materials in which the factors of reaction are kinds of CS, contents ratio of CS and MTMS, and reaction time of sol. The contact angles of the coated films obtained from the mixed CS system showed a little good relationship with MTMS content increase to those from HSA CS reaction system and the change of contact angle didn't have much effect on reaction time of sol. In the coating films obtained from HSA CS reaction system, the surface was much rough in case of that the content MTMS decreased and the reaction of sol kept long. The surface roughness of films obtained from the mixed CS reaction system showed similar tendency, though its degree was a little different. In synthesis of sol-gel coating materials, we could identify that choice of CS kinds and content ratio of CS and silane were important and it was desirable the reaction time of sol is not long.

Carbonation and Cl Penetration Resistance of Alkali Silicate Impregnant of Concrete (Silicate계 콘크리트 침투성 함침제의 탄산화 및 염해 저항성)

  • Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.719-724
    • /
    • 2008
  • Every concrete structure should continue to perform its intended functions such as to maintain the required strength and durability during its lifetime. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Main deteriorations in concrete structures result from carbonation, chloride ion attack and frost attack. Concrete can therefore be more durable by applying surface protection to increase its durability using impregnants, which are normally classified into two large groups in polymeric and silicate materials. Concrete impregnants are composed of silanes and alkali silicates (sodium, potassium and lithium silicate). Thus, this study is concerned with elevating the carbonation and Cl- penetration resistance of concrete structures by applying alkali silicate hydrophilic impregnants including lithium and potassium silicates. From the experimental test results, lithium and potassium silicates produced a good improvement in carbonation resistance and are expected to be used as hydrophilic impregnants of concrete structures.

Effect of the Photosensitizer on the Photo refractive Effect Using a Low $T_g$ Sol-Gel Glass

  • Choi, Dong-Hoon;Jun, Woong-Gi;Oh, Kwang-Yong;Yoon, Han-Na;Kim, Jae-Hong
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.250-255
    • /
    • 2003
  • We prepared the photorefractive sol-gel glass based on organic-inorganic hybrid materials containing a charge transporting molecule, second-order nonlinear optical (NLO) chromophore, photosensitizer, and plasticizer. Carbazole and 2-{ 4-[(2-hydroxy-ethyl)-methyl-amino]-benzylidene}-malononitrile were reacted with isocyanato-triethoxy silane and the functionalized silanes were employed to fabricate the efficient photorefractive media induding 2,4,7-trinitrot1uorenone (TNF) to form a charge transfer complex. The prepared sol-gel glass samples showed a large net gain coefficient and high diffraction efficiency at a certain composition. As the concentration of photosensitizer increased, the photorefractive properties were enhanced due to an increment of charge carrier density. Dynamic behavior of the diffraction efficiency was also investigated with the concentration of the photosensitizer.