• Title/Summary/Keyword: significant wave height

Search Result 239, Processing Time 0.028 seconds

Effect of flap angle on transom stern flow of a High speed displacement Surface combatant

  • Hemanth Kumar, Y.;Vijayakumar, R.
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2020
  • Hydrodynamic Drag of Surface combatants pose significant challenges with regard to fuel efficiency and exhaust emissions. Stern flaps have been used widely as an energy saving device, particularly by the US Navy (Hemanth et al. 2018a, Hemanth Kumar and Vijayakumar 2018b). In the present investigation the effect of flap turning angle on drag reduction is numerically and experimentally studied for a high-speed displacement surface combatant fitted with a stern flap in the Froude number range of 0.17-0.48. Parametric investigations are undertaken for constant chord length & span and varying turning angles of 5° 10° & 15°. Experimental resistance values in towing tank tests were validated with CFD. Investigations revealed that pressure increased as the flow velocity decreased with an increase in flap turning angle which was due to the centrifugal action of the flow caused by the induced concave curvature under the flap. There was no significant change in stern wave height but there was a gradual increase in the stern wave steepness with flap angle. Effective length of the vessel increased by lengthening of transom hollow. In low Froude number regime, flow was not influenced by flap curvature effects and pressure recovery was marginal. In the intermediate and high Froude number regimes pressure recovery increased with the flap turning angle and flow velocity.

Ultimate Limit State Risk Assessment of Penta Pod Suction Bucket Support Structures for Offshore Wind Turbine due to Scour (세굴에 기인한 해상풍력터빈 펜타팟 석션버켓 지지구조물의 극한한계상태 위험도 평가)

  • Kim, Young Jin;Vu, Ngo Duc;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.374-382
    • /
    • 2021
  • The scour risk assessment was conducted for ultimate limit state of newly developed penta pod suction bucket support structures for a 5.5 MW offshore wind turbine. The hazard was found by using an empirical formula for scour depth suitable for considering marine environmental conditions such as significant wave height, significant wave period, and current velocity. The scour fragility curve was calculated by using allowable bearing capacity criteria of suction foundation. The scour risk was assessed by combining the scour hazard and the scour fragility.

Implementation of a Joint System for Waves and Currents in the Black Sea

  • Toderascu, Robert;Rusu, Eugen
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • The objective of this paper is to present the implementation of a joint modeling system able to evaluate the propagation of the polluting agents in the marine environment. The system is composed by circulation model (Mohid) and a spectral wave model (SWAN). The results coming from the circulation model are provided as input to the SWAN simulations. Following this target the Mohid water circulation model was implemented and calibrated in the Black Sea basin. The current simulations were run for one year (2010) with a time step of 24 hours, using wind fields from ECMWF. The results concerning the current fields were introduced into SWAN, and the difference between the results of the SWAN simulations with and without the current input from Mohid was assessed. In this regard, 10 points where the significant wave height difference is higher were considered and analyzed. The conclusion of the work is that such a joint system provides more reliable results concerning the wave and current conditions in the Black Sea as it is very useful in providing the support in the case of the environmental alerts that may occur in marine environments.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

A study of the economic effects of weather and climate information on marine logistics (해상운송업의 기상기후정보 경제적 효과에 관한 연구)

  • Lho, Sangwhan;Lim, Dongsoon
    • Environmental and Resource Economics Review
    • /
    • v.23 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Weather seems to influence industries in a variety of ways. On a day-to-day basis, it is the most volatile external factor influencing consumer and market behavior. And, because weather is constantly changing, industries must deal with a continuously shifting array of opportunities and risks. This study aims to examine how climate and weather changes and information, as external environmental factors, have affected the Korean industries, particularly marine shipping and logistics. To find out the economic value of marine weather information, we use measurable results of VVOS(Vessel and Voyage Optimization Services) in the ocean shipping, which the marine weather software tool can save fuel costs up to 4%. When the fuel saving is same as VVOS's performance, the saving of Korean flag ship is estimated about 62 billion won and the saving of total flag ship is estimated about 519 billion won. However, coastal shipping companies have been struggling with the heavy weather factors, such as wave height, wave period and wind. Major findings are that wind and wave height have a significant negative effect on cargo transport, while wave period has a significant positive effect on cargo transport. And to conclude, when we use efficiently the marine weather information, we can increase cargo transport and save fuel costs etc.

Projection of the Future Wave Climate Changes Over the Western North Pacific (기후변화에 따른 북서태평양에서의 미래 파랑 전망)

  • Park, Jong Suk;Kang, KiRyong;Kang, Hyun-Suk;Kim, Young-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.267-275
    • /
    • 2013
  • This study projected the future ocean wave climate changes based on global climate change scenario using the coupled climate model HadGEM2-AO according to the emission scenarios and using regional wave model. Annual mean significant wave height (SWH) is linked closely to annual mean wind speed during the forthcoming 21st Century. Because annual mean speed decreased in the western North Pacific, annual mean SWH is projected to decrease in the future. The annual mean SWH decreases for the last 30 years of the 21st century relative to the period 1971-2000 are 2~7% for RCP4.5 and 4~11% for RCP8.5, respectively. Also, extreme SWH and wind speed are projected to decrease in the future. In terms of seasonal mean, winter extreme SWH shows similar trend with annual extreme SWH; however, that of summer shows large increasing tendency compared with current climate in the western North Pacific. Therefore, typhoon intensity in the future might be more severe in the future climate.

Empirical Formula for Wave Runup of Rubble-Mound Structure Covered by Tetrapods: Effects of Front Slope and Armour Layer Thickness (TTP로 피복된 경사식구조물의 처오름높이 산정식: 사면경사 및 피복층 두께 효과)

  • Lee, Jong-In;Bae, Il-Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1051-1059
    • /
    • 2015
  • Wave runup is one of the most important factors affecting the design of coastal structure exposed to wave attack. In this study, two dimensional laboratory tests were conducted under the different random wave conditions and structure configurations to develop a formula to predict runup heights. Rubble-mound structure consisted of tetrapod armour blocks with 1:1.5 and 1:2 slopes. The relative water depths (the ratio of the significant wave height to water depth at the toe) ranged from 0.14 to 0.56. The formula proposed here is applicable to surf similarity parameter ranging from 2 to 6. Runup heights on 1:2 slope were higher than those on 1:1.5 slope. Runup heights were reduced by 5% when the armour layer thickness increased two times.

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.

Validation of Satellite Altimeter-Observed Significant Wave Height in the North Pacific and North Atlantic Ocean (1992-2016) (북태평양과 북대서양에서의 위성 고도계 관측 유의파고 검증 (1992-2016))

  • Hye-Jin Woo;Kyung-Ae Park
    • Journal of the Korean earth science society
    • /
    • v.44 no.2
    • /
    • pp.135-147
    • /
    • 2023
  • Satellite-observed significant wave heights (SWHs), which are widely used to understand the response of the ocean to climate change, require long-term and continuous validation. This study examines the accuracy and error characteristics of SWH observed by nine satellite altimeters in the North Pacific and North Atlantic Ocean for 25 years (1992-2016). A total of 137,929 matchups were generated to compare altimeter-observed SWH and in-situ measurements. The altimeter SWH showed a bias of 0.03 m and a root mean square error (RMSE) of 0.27 m, indicating relatively high accuracy in the North Pacific and North Atlantic Ocean. However, the spatial distribution of altimeter SWH errors showed notable differences. To better understand the error characteristics of altimeter-observed SWH, errors were analyzed with respect to in-situ SWH, time, latitude, and distance from the coast. Overestimation of SWH was observed in most satellite altimeters when in-situ SWH was low, while underestimation was observed when in-situ SWH was high. The errors of altimeter-observed SWH varied seasonally, with an increase during winter and a decrease during summer, and the variability of errors increased at higher latitudes. The RMSEs showed high accuracy of less than 0.3 m in the open ocean more than 100 km from the coast, while errors significantly increased to more than 0.5 m in coastal regions less than 15 km. These findings underscore the need for caution when analyzing the spatio-temporal variability of SWH in the global and regional oceans using satellite altimeter data.

Coarse Grid Wave Hindcasting in the Yellow Sea Considering the Effect of Tide and Tidal Current (조석 및 조류 효과를 고려한 황해역 광역 파랑 수치모의 실험)

  • Chun, Hwusub;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.286-297
    • /
    • 2018
  • In the present study, wave measurements at KOGA-W01 were analyzed and then the numerical wind waves simulations have been conducted to investigate the characteristics of wind waves in the Yellow sea. According to the present analysis, even though the location of the wave stations are close to the coastal region, the deep water waves are prevailed due to the short fetch length. Chun and Ahn's (2017a, b) numerical model has been extended to the Yellow Sea in this study. The effects of tide and tidal currents should be included in the model to accommodate the distinctive effect of large tidal range and tidal current in the Yellow Sea. The wave hindcasting results were compared with the wave measurements collected KOGA-W01 and Kyeockpo. The comparison shows the reasonable agreements between wave hindcastings and measured data, however the model significantly underestimate the wave period of swell waves from the south due to the narrow computational domain. Despite the poorly prediction in the significant wave period of swell waves which usually have small wave heights, the estimation of the extreme wave height and corresponding wave period shows good agreement with the measurement data.