• Title/Summary/Keyword: signal to ratio

Search Result 4,389, Processing Time 0.031 seconds

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Improvement of extinction ratio of amplified pulses by incorporating a nonlinear optical loop mirror (EDFA로 증폭된 고출력 펄스 신호의 소광비 향상)

  • Kim, Byung-Jun;Choi, Hyun-Beom;Lee, Han-Hyub;Lee, Dong-Han;Kim, Dae-Yun;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.2
    • /
    • pp.189-193
    • /
    • 2003
  • A two-stage erbium-doped fiber amplifier (EDFA) with a band pass filter is used to get optical pulses of high peak value. The pulse signal has a 32 ㏈ extinction ratio, 125 W peak power and 79 ㎽ pulse off power. A nonlinear optical loop mirror (NOLM) is used to lower the pulse off power so as to increase the extinction ratio. The pulse signal after the NOLM has a 50.4 ㏈ extinction ratio, 35 W peak power and 0.3 ㎽ pulse off power.

Application of Tracking Signal to the Markowitz Portfolio Selection Model to Improve Stock Selection Ability by Overcoming Estimation Error (추적 신호를 적용한 마코위츠 포트폴리오 선정 모형의 종목 선정 능력 향상에 관한 연구)

  • Kim, Younghyun;Kim, Hongseon;Kim, Seongmoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.3
    • /
    • pp.1-21
    • /
    • 2016
  • The Markowitz portfolio selection model uses estimators to deduce input parameters. However, the estimation errors of input parameters negatively influence the performance of portfolios. Therefore, this model cannot be reliably applied to real-world investments. To overcome this problem, we suggest an algorithm that can exclude stocks with large estimation error from the portfolio by applying a tracking signal to the Markowitz portfolio selection model. By calculating the tracking signal of each stock, we can monitor whether unexpected departures occur on the outcomes of the forecasts on rate of returns. Thereafter, unreliable stocks are removed. By using this approach, portfolios can comprise relatively reliable stocks that have comparatively small estimation errors. To evaluate the performance of the proposed approach, a 10-year investment experiment was conducted using historical stock returns data from 6 different stock markets around the world. Performance was assessed and compared by the Markowitz portfolio selection model with additional constraints and other benchmarks such as minimum variance portfolio and the index of each stock market. Results showed that a portfolio using the proposed approach exhibited a better Sharpe ratio and rate of return than other benchmarks.

Implementation of sigma-delta A/D converter IP for digital audio

  • Park SangBong;Lee YoungDae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, we only describe the digital block of two-channel 18-bit analog-to-digital (A/D) converter employing sigma-delta method and xl28 decimation. The device contains two fourth comb filters with 1-bit input from sigma­delta modulator. each followed by a digital half band FIR(Finite Impulse Response) filters. The external analog sigma-delta modulators are sampled at 6.144MHz and the digital words are output at 48kHz. The fourth-order comb filter has designed 3 types of ways for optimal power consumption and signal-to-noise ratio. The following 3 digital filters are designed with 12tap, 22tap and 116tap to meet the specification. These filters eliminate images of the base band audio signal that exist at multiples of the input sample rate. We also designed these filters with 8bit and 16bit filter coefficient to analysis signal-to-noise ratio and hardware complexity. It also included digital output interface block for I2S serial data protocol, test circuit and internal input vector generator. It is fabricated with 0.35um HYNIX standard CMOS cell library with 3.3V supply voltage and the chip size is 2000um by 2000um. The function and the performance have been verified using Verilog XL logic simulator and Matlab tool.

  • PDF

Image Reduction Filter for Edge Preservation in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 에지 보존을 위한 영상 복원 필터)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.953-955
    • /
    • 2016
  • Degradation is occurred in the process of the signal transmission in the image processing system due to various reasons. Degradation is noise addition in the image signal and the representative one to cause degradation is salt and pepper noise. Therefore, image restoring filter was suggested in this article to apply and process weighted value by the changes of each directional pixel upon breakdown of local mask with 8 directions in order to restore the damaged image in the environment of salt and pepper noise. In addition, peak signal to noise ratio (PSNR) was used to compare the existing method as the objective determinant standard of the improvement effect.

  • PDF

Development of Wireless Transmission and Receiver Module for the Management of Chronic Diseases (만성질환 관리를 위한 무선 송·수신기 모듈 개발)

  • Kim, Min Soo;Cho, Young Chang
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1082-1087
    • /
    • 2019
  • In this study, ECG signal amplifier, wireless transmitter/receiver circuit, signal processing filter circuit and A/D converter circuit design required for the development of small sized ECG module for wireless transmission/ reception were performed. In order to verify the performance of ECG sensors, the measurement was performed from 1 m to 3 m to measure the signal noise ratio according to the gateway distance. Experimental results showed that the signal noise ratio at 2 m distance was 17.18 dB on average, which fulfilled the requirements for commercialization. The experimental results obtained in this study are expected to contribute to the low cost, high efficiency mobile health field where remote monitoring diagnosis can be applied to small biometric devices for chronic disease management.

Design of digital clock level translator with 50% duty ratio from small sinusoidal input (작은 정현파입력의 50% Duty Ratio 디지털 클럭레벨 변환기 설계)

  • Park, Mun-Yang;Lee, Jong-Ryul;Kim, Ook;Song, Won-Chul;Kim, Kyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2064-2071
    • /
    • 1998
  • A new digital clock level translator has been designed in order to produce a clock source of the internal logic circuits. The translator output has 50% duty ratio from small sinusoidal input such as TCXO which oscillates itself in poratable components. The circuit consists of positive and negative comparators, RS latch, charge pump, and reference vol- tage generator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator. It detects pulse width of the output waveform and feedbacks the control signal to the input com-parator reference, producing output waveform with valid 50% duty ratio of the digital signal level. The designed level translator can be used as a sampling clock source of ADC, PLL and the colck source of the clock synthesizer. The circuit wasdesigned in a 0.8.mu.m analog CMOS technology with double metal, double poly, and BSIM3 circuit simulation model. From our experimental results, a stable operating characteristics of 50 +3% duty ratio was obtained from the sinusoidal input wave of 370 mV.

  • PDF

Adaptive noise cancellation algorithm reducing path misadjustment due to speech signal (음성신호로 인한 잡음전달경로의 오조정을 감소시킨 적응잡음제거 알고리듬)

  • 박장식;김형순;김재호;손경식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1172-1179
    • /
    • 1996
  • General adaptive noise canceller(ANC) suffers from the misadjustment of adaptive filter weights, because of the gradient-estimate noise at steady state. In this paper, an adaptive noise cancellation algorithm with speech detector which is distinguishing speech from silence and adaptation-transient region is proposed. The speech detector uses property of adaptive prediction-error filter which can filter the highly correlated speech. To detect speech region, estimation error which is the output of the adaptive filter is applied to the adaptive prediction-error filter. When speech signal apears at the input of the adaptive prediction-error filter. The ratio of input and output energy of adaptive prediction-error filter becomes relatively lower. The ratio becomes large when the white noise appears at the input. So the region of speech is detected by the ratio. Sign algorithm is applied at speech region to prevent the weights from perturbing by output speech of ANC. As results of computer simulation, the proposed algorithm improves segmental SNR and SNR up to about 4 dBand 11 dB, respectively.

  • PDF

Optical Signal Sampling Based on Compressive Sensing with Adjustable Compression Ratio

  • Zhou, Hongbo;Li, Runcheng;Chi, Hao
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.288-296
    • /
    • 2022
  • We propose and experimentally demonstrate a novel photonic compressive sensing (CS) scheme for acquiring sparse radio frequency signals with adjustable compression ratio in this paper. The sparse signal to be measured and a pseudo-random binary sequence are modulated on consecutively connected chirped pulses. The modulated pulses are compressed into short pulses after propagating through a dispersive element. A programmable optical filter based on spatial light modulator is used to realize spectral segmentation and demultiplexing. After spectral segmentation, the compressed pulses are transformed into several sub-pulses and each of them corresponds to a measurement in CS. The major advantage of the proposed scheme lies in its adjustable compression ratio, which enables the system adaptive to the sparse signals with variable sparsity levels and bandwidths. Experimental demonstration and further simulation results are presented to verify the feasibility and potential of the approach.

A STUDY ON PULSE RATE SYSTEM

  • Kim, H. K.;S. C. Han;K. K. Min;W. Huh
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.535-537
    • /
    • 1998
  • In this paper, we devised a pulse rate detection system to provide basic clinical index of cold-hot diagnosis of oriental medicine. The system consists of pulse signal detection, respiration signal detection, electrocardiograph detection, A/D conversion and computer system parts. We define a pulse rate by a pulse count to the respiration period inspiration pulse rate by a pulse count to the inspiration period, and expiration pulse rate by a pulse count to the expiration period. The clinical experiments for normal Person to evaluate the pulse rate detection system show the pulse/respiration ratio of 4.30${\pm}$1.03, the pulse/inspiration ratio of 1.60${\pm}$0.32, the pulse/expiration ratio of 2.37${\pm}$0.75.

  • PDF