• Title/Summary/Keyword: signal timing

Search Result 565, Processing Time 0.03 seconds

A Satellite Navigation Signal Scheme Using Zadoff-Chu Sequence for Reducing the Signal Acquisition Space

  • Park, Dae-Soon;Kim, Jeong-Been;Lee, Je-Won;Kim, Kap-Jin;Song, Kiwon;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A signal system for improving the code acquisition complexity of Global Navigation Satellite System (GNSS) receiver is proposed and the receiving correlator scheme is presented accordingly. The proposed signal system is a hierarchical code type with a duplexing configuration which consists of the Zadoff-Chu (ZC) code having a good auto-correlation characteristic and the Pseudo Random Noise (PRN) code for distinguishing satellites. The receiving correlator has the scheme that consists of the primary correlator for the ZC code and the secondary correlator which uses the PRN code for the primary correlation results. The simulation results of code acquisition using the receiving correlator of the proposed signal system show that the proposed signal scheme improves the complexity of GNSS receiver and has the code acquisition performance comparable to the existing GNSS signal system using Coarse/Acquisition (C/A) code.

Ultra-Fast L2-CL Code Acquisition for a Dual Band GPS Receiver

  • Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.4
    • /
    • pp.151-160
    • /
    • 2015
  • GPS L2C signal is a recently added civil signal to L2 frequency and is constructed by time division multiplexing of civil moderate (L2-CM) and civil long (L2-CL) code signals. While the L2-CM code is 20 ms-periodic and modulates satellite navigation message, the L2-CL code is 1.5s-periodic with 767,250 chips long code sequence and carries no data. Therefore, the L2-CL code signal allows receivers to perform a very long coherent integration. However, due to the length of the L2-CL code, the acquisition of the L2-CL code signal may take too long or require too much hardware resources. In this paper, we propose a three-step ultra-fast L2-CL code acquisition (TSCLA) technique for dual band GPS receivers. In the proposed TSCLA technique, a dual band GPS receiver sequentially acquires the coarse/acquisition (C/A) code signal at L1 frequency, the L2-CM code signal, and the L2-CL code signal to minimize mean acquisition time (MAT). The theoretical performance analysis and numerous Monte Carlo simulations show the significant advantage of the proposed TSCLA technique over conventional techniques introduced in the literature.

Positioning of Wireless Base Station using Location-Based RSRP Measurement

  • Cho, Seong Yun;Kang, Chang Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.183-192
    • /
    • 2019
  • In fingerprint-based wireless positioning, it is necessary to establish a DB of the unmeasured area. To this end, a method of estimating the position of a base station based on a signal propagation model, and a method of estimating the information of the received signal in the unmeasured area based on the estimated position of the base station have been investigating. The purpose of this paper is to estimate the position of the base station using the measured information and to analyze the performance of the positioning. Vehicles equipped with a GPS receiver and signal measuring equipment travel the service area and acquire location-based Reference Signal Received Power (RSRP) measurements. We propose a method of estimating the position of the base station using the measured information. And the performance of the proposed method is analyzed on a simulation basis. The simulation results confirm that the accuracy of the positioning is affected by the measured area and the Dilution of Precision (DOP), the accuracy of the position information obtained by the GPS receiver, and the errors of the signal included in the RSRP. Based on the results of this paper, we can expect that the position of the base station can be estimated and the DB of the unmeasured area can be constructed based on the estimated position of the base stations and the signal propagation model.

Signal Modulation Techniques and Performance Analysis for KPS Signal Design

  • Shin, Heon;Han, Kahee;Joo, Jung-Min;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.293-304
    • /
    • 2020
  • In this paper, various modulation techniques, including the legacy Global Navigation Satellite System (GNSS) signal modulation techniques, are introduced and the spectral characteristics and correlation characteristics of signals with various modulation techniques are analyzed based on numerical simulation. With the development of various GNSS services, the limited frequency band has become increasingly saturated, and issues of interoperability and compatibility have emerged in the new GNSS design. Since the efficient allocation of frequency resources is closely related to spectrum design, modulation techniques are one of the important signal design parameters of new signal design. Signal modulation techniques are closely related to various figure of merits (FoMs) as well as spectrum characteristic, and in some cases there is a complicated trade-off between FoMs. Thus, the FoMs associated with modulation technology should be analyzed and the best signal candidates should be chosen carefully via the trade-off analysis for FoMs. In this paper, we define the modulation technique based on Phase Shift Keying (PSK), Binary Offset Carrier (BOC) and Continuous Phase Modulation (CPM) for the design of KPS signals, and the FoMs of signals in terms of spectrum and correlation function are evaluated. Signals with various modulation techniques are implemented through a numerical simulation, and the relevant FoMs are analyzed.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

Non-Pilot-Aided Timing Offset Estimation for OFDM Systems with Frequency Diversity

  • Yang, Hyun;You, Young-Hwan
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-177
    • /
    • 2006
  • This letter deals with non-pilot-aided symbol timing estimation methods in an orthogonal frequency division multiplexing (OFDM) system. To do this, OFDM system uses a frequency diversity scheme over two consecutive data symbols. Our approach can be viewed as an expansion of Schmidl's and Minn's correlation methods. Using the OFDM signal equipped with frequency diversity, however, symbol timing is accurately estimated without additional training symbol and a second-order diversity gain is achieved.

  • PDF

Wireless Triggering Pulse Generation for Digital X-ray Imaging System (디지털 x-ray 영상시스템을 위한 무선 트리거 발생기)

  • Ko, Dae-Sik;Lee, Jae-Cheol;Lee, Joo-Shin
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.163-169
    • /
    • 2007
  • In this paper, we propose a method of trigger pulse generation to capture the image on time by making a synchronization between the x-ray generator and digital x-ray image acquisition system. we designed a wireless trigger pulse generation circuit to make a synchronization between x-ray generator and digital image acquisition system and analysis its performance. When it starts to detect a certain level of x-ray radiation or above from the air, this method starts to generate a ACQ_START signal to indicate the timing for image acquisition starting from digital image acquisition system. Hence, when it starts to detect under certain level of x-ray signal from the air, this method starts to generate a ACC_END signal to indicate the timing for image acquisition stop from digital image acquisition system. Image acquisition is activated only this time between ACQ_START and ACQ_END signal. By doing this wireless detecting of x-ray signal from remote, we can get more accurate timing for capturing the x-ray image and any type of x-ray generator can be connected to digital image acquisition system, regards of wired protocol. This makes easy installation. We could get 3.5 line pair / mm resolution at 20 mAs of x-ray level with resolution chart. This is same or better image comparing to conventional wired result.

  • PDF

Synthesis of Asynchronous Circuits from Free-Choice Signal Transition Graphs with Timing Constraints (시간 제한 조건을 가진 자유 선택 신호 전이 그래프로부터 비동기 회로의 합성)

  • Jeong, Seong-Tae;Jeong, Seok-Tae
    • The KIPS Transactions:PartA
    • /
    • v.9A no.1
    • /
    • pp.61-74
    • /
    • 2002
  • This paper presents a method which synthesizes asynchronous circuits from free-choice Signal Transition Graphs (STGs) with timing constraints. The proposed method synthesizes asynchronous circuits by analyzing: the relations between signal transitions directly from the STGs without generating state graphs. The synthesis procedure decomposes a free-choice STG into deterministic STGs which do not have choice behavior. Then, a timing analysis extracts the timed concurrency and tamed causality relations between any two signal transitions for each deterministic STG. The synthesis procedure synthesizes circuits for each deterministic STG and synthesizes the final circuit by merging the circuits for each deterministic STG. The experimental results show that our method achieves significant reductions in synthesis time for the circuits which have a large state space, and generates circuits that have nearly the same area as compared to previous methods.

Development of Traffic State Classification Technique (교통상황 분류를 위한 클러스터링 기법 개발)

  • Woojin Kang;Youngho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2023
  • Traffic state classification is crucial for time-of-day (TOD) traffic signal control. This paper proposed a traffic state classification technique applying Deep-Embedded Clustering (DEC) method that uses a high dimensional traffic data observed at all signalized intersections in a traffic signal control sub area (SA). So far, signal timing plan has been determined based on the traffic data observed at the critical intersection in SA. The current method has a limitation that it cannot consider a comprehensive traffic situation in SA. The proposed method alleviates the curse of dimensionality and turns out to overcome the shortcomings of the current signal timing plan.

A TX Clock Timing Technique for the CIJ Compensation of Coupled Microstrip Lines

  • Jung, Hae-Kang;Lee, Soo-Min;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.232-239
    • /
    • 2010
  • By using the clock timing control at transmitter (TX), the crosstalk-induced jitter (CIJ) is compensated for in the 2-bit parallel data transmission through the coupled microstrip lines on printed circuit board (PCB). Compared to the authors' prior work, the delay block circuit is simplified by combining a delay block with a minimal number of stages and a 3-to-1 multiplexer. The delay block generates three clock signals with different delays corresponding to the channel delay of three different signal modes. The 3-to-1 multiplexer selects one of the three clock signals for TX timing depending on the signal mode. The TX is implemented by using a $0.18\;{\mu}m$ CMOS process. The measurement shows that the TX reduces the RX jitters by about 38 ps at the data rates from 2.6 Gbps to 3.8 Gbps. Compared to the authors' prior work, the amount of RX Jitter reduction increases from 28 ps to 38 ps by using the improved implementation.