• Title/Summary/Keyword: signal strength map

Search Result 49, Processing Time 0.028 seconds

Optimal Fingerprint Data Filtering Model for Location Based Services (위치기반 서비스 강화를 위한 최적 데이터 필터링 기법 및 측위 시스템 적용 모델)

  • Jung, Jun;Kim, Jae-Hoon
    • Korean Management Science Review
    • /
    • v.29 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • Focusing on the rapid market penetration of smart phones, the importance of LBS (Location Based Service) is drastically increased. However, traditional GPS method has critical weakness caused by limited availability, such as indoor environment. WPS is newly attractive method as a widely applicable positioning method. In WPS, RSSI (Received Signal Strength Indication) data of all Wi-Fi APs (Access Point) are measured and stored into a huge database. The stored RSSI data in database make single radio fingerprint map. By the radio fingerprint map, we can estimate the actual position of target point. The essential factor of radio fingerprint database is data integrity of RSSI. Because of millions of APs in urban area, RSSI measurement data are seriously contaminated. Therefore, we present the unified filtering method for RSSI measurement data. As the results of filtering, we can show the effectiveness of suggested method in practical positioning system of mobile operator.

On the Design of ToA Based RSS Compensation Scheme for Distance Measurement in WSNs (ToA 기반 RSS 보정 센서노드 거리 측정 방법)

  • Han, Hyeun-Jin;Kwon, Tae-Wook
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.615-620
    • /
    • 2009
  • Nowadays, wireless infrastructures such as sensor networks are widely used in many different areas. In case of sensor networks, the wirelessly connected sensors can execute different kind of tasks in a diversity of environments, and one of the most important parameter for a successful execution of such tasks is the location information of each node. As to localization problems in WSNs, there are ToA (Timer of Arrival), RSS (Received Signal Strength), AoA (Angle of Arrival), etc. In this paper, we propose a modification of existing ToA and RSS based methods, adding a weighted average scheme to measure more precisely the distance between nodes. The comparison experiments with the traditional ToA method show that the average error value of proposed method is reduced by 0.1 cm in indoor environment ($5m{\times}7m$) and 0.6cm in outdoor environment ($10{\times}10m$).

Performance Verification of a New Positioning Technology by Low-Resolution CDMA Pilot Strength Measurements (저해상도 CDMA Pilot 신호세기를 활용한 새로운 측위기법의 성능 검증)

  • Lee, Hyung Keun;Shim, Ju-Young;Kim, Hee-Sung
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.2
    • /
    • pp.154-162
    • /
    • 2007
  • This paper verifies the performance of the wireless-signal map-matching (WSMM) method that is recently proposed to mitigate the effects of non-line-of-sight (NLOS) error in positioning under wireless terrestrial network environments. The WSMM method is the new positioning technology that estimates and compensate the NLOS errors by processing the bulks of anonymous measurements at unknown locations that are collected randomly and automatically. The WSMM method would be advantageous for various configurations of future ubiquitous sensor networks since it is based on the existing network configuration for communication and it requires no additional hardware in base stations and mobile handsets. It is shown that the application of the WSMM concept to the real CDMA pilot strength measurment message (PSMM) actually mitigates the NLOS error effects and improves overall positioning accuracy.

  • PDF

Bayesian Filter-Based Mobile Tracking under Realistic Network Setting (실제 네트워크를 고려한 베이지안 필터 기반 이동단말 위치 추적)

  • Kim, Hyowon;Kim, Sunwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1060-1068
    • /
    • 2016
  • The range-free localization using connectivity information has problems of mobile tracking. This paper proposes two Bayesian filter-based mobile tracking algorithms considering a propagation scenario. Kalman and Markov Chain Monte Carlo (MCMC) particle filters are applied according to linearity of two measurement models. Measurement models of the Kalman and MCMC particle filter-based algorithms respectively are defined as connectivity between mobiles, information fusion of connectivity information and received signal strength (RSS) from neighbors within one-hop. To perform the accurate simulation, we consider a real indoor map of shopping mall and degree of radio irregularity (DOI) model. According to obstacles between mobiles, we assume two types of DOIs. We show the superiority of the proposed algorithm over existing range-free algorithms through MATLAB simulations.

A Method to Improve Location Estimation of Sensor Node (센서노드 위치 측정 정확도 향상 방법)

  • Han, Hyeun-Jin;Kwon, Tae-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1491-1497
    • /
    • 2009
  • Existing methods to measure are based on ToA (Timer of Arrival), RSS (Received Signal Strength), AoA(Angle of Arrival) and other methods. In this paper, we propose a compensation of ToA and RSS methods to measure more precisely the distance of nodes. The comparison experiments with the traditional ToA method show that the average error value of proposed method is reduced 30%. We believe that this proposal can improve location estimation of sensor nodes in wireless sensor networks.

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

Wavelet-Based Digital Image Watermarking by Using Lorenz Chaotic Signal Localization

  • Panyavaraporn, Jantana;Horkaew, Paramate
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.169-180
    • /
    • 2019
  • Transmitting visual information over a broadcasting network is not only prone to a copyright violation but also is a forgery. Authenticating such information and protecting its authorship rights call for more advanced data encoding. To this end, electronic watermarking is often adopted to embed inscriptive signature in imaging data. Most existing watermarking methods while focusing on robustness against degradation remain lacking of measurement against security loophole in which the encrypting scheme once discovered may be recreated by an unauthorized party. This could reveal the underlying signature which may potentially be replaced or forged. This paper therefore proposes a novel digital watermarking scheme in temporal-frequency domain. Unlike other typical wavelet based watermarking, the proposed scheme employed the Lorenz chaotic map to specify embedding positions. Effectively making this is not only a formidable method to decrypt but also a stronger will against deterministic attacks. Simulation report herein highlights its strength to withstand spatial and frequent adulterations, e.g., lossy compression, filtering, zooming and noise.

Error Estimation Method for Matrix Correlation-Based Wi-Fi Indoor Localization

  • Sun, Yong-Liang;Xu, Yu-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2657-2675
    • /
    • 2013
  • A novel neighbor selection-based fingerprinting algorithm using matrix correlation (MC) for Wi-Fi localization is presented in this paper. Compared with classic fingerprinting algorithms that usually employ a single received signal strength (RSS) sample, the presented algorithm uses multiple on-line RSS samples in the form of a matrix and measures correlations between the on-line RSS matrix and RSS matrices in the radio-map. The algorithm makes efficient use of on-line RSS information and considers RSS variations of reference points (RPs) for localization, so it offers more accurate localization results than classic neighbor selection-based algorithms. Based on the MC algorithm, an error estimation method using artificial neural network is also presented to fuse available information that includes RSS samples and localization results computed by the MC algorithm and model the nonlinear relationship between the available information and localization errors. In the on-line phase, localization errors are estimated and then used to correct the localization results to reduce negative influences caused by a static radio-map and RP distribution. Experimental results demonstrate that the MC algorithm outperforms the other neighbor selection-based algorithms and the error estimation method can reduce the mean of localization errors by nearly half.

Estimating Indoor Radio Environment Maps with Mobile Robots and Machine Learning

  • Taewoong Hwang;Mario R. Camana Acosta;Carla E. Garcia Moreta;Insoo Koo
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.92-100
    • /
    • 2023
  • Wireless communication technology is becoming increasingly prevalent in smart factories, but the rise in the number of wireless devices can lead to interference in the ISM band and obstacles like metal blocks within the factory can weaken communication signals, creating radio shadow areas that impede information exchange. Consequently, accurately determining the radio communication coverage range is crucial. To address this issue, a Radio Environment Map (REM) can be used to provide information about the radio environment in a specific area. In this paper, a technique for estimating an indoor REM usinga mobile robot and machine learning methods is introduced. The mobile robot first collects and processes data, including the Received Signal Strength Indicator (RSSI) and location estimation. This data is then used to implement the REM through machine learning regression algorithms such as Extra Tree Regressor, Random Forest Regressor, and Decision Tree Regressor. Furthermore, the numerical and visual performance of REM for each model can be assessed in terms of R2 and Root Mean Square Error (RMSE).

A Comparative Study on WPS_WS and Traditional Wireless Positioning Systems (WPS_WS기법과 전통적 무선 측위 시스템과의 비교 연구)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.239-241
    • /
    • 2011
  • Recently, studies on the indoor positioning system in application of wireless AP have been actively going on. The indoor wireless positioning system can be classified into several types according to the positioning techniques. Among them, the fingerprint technique is a technique that establishes the radio map by collecting MAC information of AP and RSSI (Received Signal Strength Indication) before executing positioning and then determines the position in comparison with the information of AP collected during the course of positioning. In the traditional fingerprint techniques, they control and manage by installing APs that are utilized for positioning. However, in case of specific indoors, the management can be done by installing a small number of APs but, in case of wide outdoors, it's practically impossible to install and manage equipments for positioning. In order to solve such problem, there is an improved fingerprint technique that utilizes the APs that are already scattered around. This technique will allow positioning without additional cost, but even the improved fingerprint positioning technique may incur dropped accuracy as well due to wide fluctuation of the AP information. In this paper, the traditional fingerprint technique and the improved fingerprint technique are explained in comparison, and we will compares difference in performance with the proposed WPS_WS (Wi-Fi Positioning System_Weak Signal) technique.

  • PDF