• 제목/요약/키워드: signal pattern classification

검색결과 188건 처리시간 0.026초

오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류 (Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder)

  • 이상길;이인성
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.239-246
    • /
    • 2023
  • 본 논문에서는 오디오 부호화기를 위한 스펙트럼 변화 파라미터와 Mel Frequency Cepstral Coefficients(MFCC) 파라미터를 이용하여 음성과 음악 신호를 분류하는 개루프 방식의 알고리즘을 제안한다. 반응성을 높이기 위해 단구간 특징 파라미터로 MFCC를 사용하고 정확도를 높이기 위해 장구간 특징 파라미터로 스펙트럼 변화를 사용하였다. 전체적인 음성/음악 신호 분류 결정은 단구간 분류와 장구간 분류를 결합하여 이루어진다. 패턴인식을 위해 Gaussian Mixed Model(GMM)을 사용하였고, Expectation Maximization(EM) 알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 다양한 오디오 음원에서 평균적으로 1.5% 분류 오류율을 보였고 단구간 단독 분류 방법 보다 0.9%, 장구간 단독 분류 방법보다 0.6%의 분류 오류율의 성능 개선을 이룰 수 있었다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 USAC 오디오 분류 방법보다 타악기 음악 신호에서 9.1% 분류 오류율, 음성신호에서 5.8% 분류 오류율의 성능 개선을 이룰 수 있었다.

상상 움직임에 대한 실시간 뇌전도 뇌 컴퓨터 상호작용, 큐 없는 상상 움직임에서의 뇌 신호 분류 (Real-time BCI for imagery movement and Classification for uncued EEG signal)

  • 강성욱;전성찬
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.642-645
    • /
    • 2009
  • Brain Computer Interface (BCI) is a communication pathway between devices (computers) and human brain. It treats brain signals in real-time basis and discriminates some information of what human brain is doing. In this work, we develop a EEG BCI system using a feature extraction such as common spatial pattern (CSP) and a classifier using Fisher linear discriminant analysis (FLDA). Two-class EEG motor imagery movement datasets with both cued and uncued are tested to verify its feasibility.

  • PDF

패턴인식을 위한 디지탈 DBNN의 설계 (Design of digital DBNN for pattern recoginition)

  • 송창영;문성룡;김환용
    • 한국통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.3001-3011
    • /
    • 1996
  • In this paper, using DBNN algorithm which is used in the binary pattern classification or speech signal processing the digital DBNN circuit is designed having the variable expansion depending the size of input data and pattern type. The processing elemen(PE) of the proposed network consists of the synapse and MAXNET circuits for the similarity measurement between reference and input pattern. Global MAXNET selects the global winner among the local winners which is selected in each PE. Through the several simultions, and thus each PE and global MAXNET search the reference pattern that was the most simlar to input pattern for the discord of the pattern.

  • PDF

다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘 (Sensibility Classification Algorithm of EEGs using Multi-template Method)

  • 김동준
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권12호
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

인공신경망 기반의 기타 코드 분류 시스템 성능 비교 (Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network)

  • 박선배;유도식
    • 한국멀티미디어학회논문지
    • /
    • 제21권3호
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

바이올린과 첼로 연주 데이터를 이용한 분류 알고리즘의 성능 비교 (Performance Comparison of Classification Algorithms in Music Recognition using Violin and Cello Sound Files)

  • 김재천;곽경섭
    • 한국통신학회논문지
    • /
    • 제30권5C호
    • /
    • pp.305-312
    • /
    • 2005
  • 음악인식에 주로 사용되는 세 가지 알고리즘의 성능을 비교하였다. 다양한 분류알고리즘을 소개하고 그 중 베이지안법, 최근접이웃법과 k-최근접이웃법을 이용하여 악기를 분류하였다. 악기 샘플파일에서 영교차율, 평균, 분산, 평균피크레벨의 4가지 특성값을 추출하여 분류시스템의 데이터로 사용하였다. 사용된 악기 샘플은 바이올린, 바로크 바이올린, 바로크 첼로이다. 실험결과 최근접이웃 알고리즘이 악기 분류에 있어서 가장 좋은 성능을 보여 주었다. 최근접이웃 알고리즘은 단순하면서도 빠른 계산결과를 보여 악기 분류에 적절한 알고리즘으로 판단되었다.

SMUAP의 패턴분류를 위한 근 신호처리 알고리듬 (A EMG Signal Processing Algorithm for SMUAP Pattern Classification)

  • 이진;조일준;변윤식;홍완희;김성환
    • 대한전자공학회논문지
    • /
    • 제26권7호
    • /
    • pp.106-111
    • /
    • 1989
  • 본 연구에서는 근신호로 부터 SMUAP의 패턴 분류를 위한 새로운 근신호처리 알고리듬을 제시하였다. 제안된 알고리듬은 spike 카운터를 이용한 의사결정 방법으로서 ISI의 조합 및 규칙성을 검사하고, 주파수 평면에서 SMUAP 파형을 정렬하였으며 FIR 필터링을 통하여 스파이크를 선정하였다. 실험결과 IBM PC/AT 상에서 $10{\sim}50%$ MVC에 대한 5초 동안의 침 전극으로 검출된 근신호로 부터 $5{\sim}9$개의 SMUAP를 분류하였으며 인식율은 55% 이상이었고 컴퓨터 수행시간은 2분이었다.

  • PDF

뇌파를 이용한 감정의 패턴 분류 기술 (Pattern Classification of Four Emotions using EEG)

  • 김동준;김영수
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권4호
    • /
    • pp.23-27
    • /
    • 2010
  • 본 연구에서는 감성 평가 시스템 가장 적합한 파라미터를 찾기 위하여 3가지 뇌파 파라미터를 이용하여 감정 분류 실험을 하였다. 뇌파 파라미터는 선형예측기계수(linear predictor coefficients)와 FFT 스펙트럼 및 AR 스펙트럼의 밴드별 상호상관계수(cross-correlation coefficients)를 이용하였으며, 감정은 relaxation, joy, sadness, irritation으로 설정하였다. 뇌파 데이터는 대학의 연극동아리 학생 4명을 대상으로 수집하였으며, 전극 위치는 Fp1, Fp2, F3, F4, T3, T4, P3, P4, O1, O2를 사용하였다. 수집된 뇌파 데이터는 전처리를 거친 후 특징 파라미터를 추출하고 패턴 분류기로 사용된 신경회로망(neural network)에 입력하여 감정 분류를 하였다. 감정 분류실험 결과 선형예측기계수를 이용하는 것이 다른 2가지 보다 좋은 성능을 나타내었다.

  • PDF

웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류 (Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network)

  • 임동수;양보석;안병하;;김동조
    • 동력기계공학회지
    • /
    • 제7권2호
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF