• Title/Summary/Keyword: signal measurement

Search Result 3,137, Processing Time 0.031 seconds

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

Image Evaluation by Metallic Hip Prosthesis in Computed Tomography Examination (컴퓨터단층촬영검사에서 고관절 삽입물에 의한 영상평가)

  • Min, Byung-In;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.281-288
    • /
    • 2022
  • In this study, four algorithms (Soft, Standard, Detail, Bone) were used for general CT scan (Before MAR) images and MAR (After MAR) images for patients with metal implants inserted into the hip joint. was applied to compare and analyze Noise, SNR, and CNR to find out the optimal algorithm for quantitative evaluation. As the analysis method, Image J program, which can calculate image analysis and area and pixel values on the image reconstructed with four algorithms, was used. In order to obtain Noise, SNR, and CNR, the HU mean value and HU SD value were obtained by designating the bone (ischium) closest to the metal implant in the image for the measurement site, and the background noise was the surrounding muscle. The region of interest (ROI) was equally designated as 15 × 15 mm in consideration of the size of the bone, and the values of SNR and CNR were calculated according to the given equation. As a result, for noise, After MAR and Soft algorithms showed the lowest noise, and SNR and CNR showed the highest for Before MAR and Soft algorithms. Therefore, the soft algorithm is judged to be the most appropriate algorithm for metal implant hip joint CT.

The Experimental Study on Antioxidant, Anti-inflammatory, Antipruritic and Antibacterial Effects of the Banchong-san (BCS) (반총산의 항산화, 항염증, 항소양증, 항균효능에 관한 실험 연구)

  • Cho, Eun-Jin;Jo, Seong-Hui;Yang, Seung-Jeong
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.34 no.3
    • /
    • pp.29-48
    • /
    • 2021
  • Objectives: Banchong-san (BCS) is a herbal formula composed of 13 korean medicinal herbs and is traditionally used to treat inflammatory diseases and pain. The object of this study was to research the antioxidant, anti-inflammatory, antipruritic and antimicrobial effects of the BCS in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods: In this experiment, effects of BCS on the following four were measured as follows: (1) Anti-oxidative effects were evaluated by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) Radical scavenging activity, 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Radical scavenging activity. (2) Anti-inflammatory effects were evaluated by the production amount of Reactive oxygen species (ROS), Nitric oxide (NO), Interleukin-1β (IL-1β), Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), Prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)(the previous two are "mRNA"), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinases (p38), inhibitor of nuclear factor kappa B (IκBα), nuclear factor kappa B (NF-κB) (the previous five are "Protein") in LPS-Stimulated RAW 264.7 cells. (3)Antipruritic effects were evaluated by the production amount of histamine, Leukotriene B4 (LTB4), LeukotrieneC4 (LTC4) Levels in phorbol 12-myristate 13-acetate(PMA)/ionomycin-stimulated MC/9 mast cell. (4) Anti-microbial effects were evaluated by the growth suppression of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. Results: The following results were obtained through each measurement: (1) DPPH Radical Scavenging Activity, ABTS Radical Scavenging Activity evoked a significant concentration-dependent increase. (2) ROS, NO, IL-1β, IL-6, TNF-α, PGE2 production amount, iNOS, COX-2 mRNA expression were significantly reduced in the BCS extraction group compared with the control group and significantly decreased the amount of ERK, JNK, p38, NF-κB Protein expression. The amount of IκB-α Protein Expression have increased significantly. (3) The amounts of histamine, LTB4, LTC4 were significantly decreased. (4) The antibacterial efficacy, BCS inhibited the growth of Escherichia coli, Pseudomonas aeruginosa at concentrations of 5 ㎍/ml, but did not suppress the growth of staphylococcus aureus and aspergillus niger. Conclusions: The experimental results show that BCS has anti-oxidant, anti-inflammatory, antipruritic and antimicrobial properties.

Effect of Medical Symbols on Memory Focusing on fMRI Empirical Studies (의료 심볼이 기억에 미치는 영향)

  • Myung-Chul, Park;Jae-Sang, You;Dong-Hyun, Oh;Yong-Gwon, Kim;Seok-Hwan, Bae
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.99-106
    • /
    • 2023
  • This study measured the signal intensity (SI) of the hippocampus in relation to memory via fMRI analysis of 3 types of radiology symbols, 3 types of nuclear medicine symbols, and 3 types of oncology symbols among the most commonly employed medical symbols in hospitals. The following are the conclusions of the study. result of analyzing the SI values for symbol 1, symbol 2, and symbol 3 of the radiology, nuclear medicine, and oncology departments, symbol 3 had the highest SI value (1.72 ± 0.56) in radiology, symbol 2 had the highest SI value (1.69 ± 0.64) in nuclear medicine, and symbol 2 had the highest SI value (1.64 ± 0.63) in oncology. The overall mean of radiology, nuclear medicine, and oncology symbols was 1.62 ± 0.60 for nuclear medicine, 1.61 ± 0.59 for oncology, and 1.49 ± 0.49 for radiology. According to the overall SI measurement results, symbol 3 in radiology, symbol 2 in nuclear medicine, and symbol 2 in oncology were confirmed to have high SI values. If symbols with high SI values are used in a hospital, it is believed to be beneficial for navigating in any hospital.

Notoginseng leaf triterpenes ameliorates mitochondrial oxidative injury via the NAMPT-SIRT1/2/3 signaling pathways in cerebral ischemic model rats

  • Weijie, Xie;Ting, Zhu;Ping, Zhou;Huibo, Xu;Xiangbao, Meng;Tao, Ding;Fengwei, Nan;Guibo, Sun;Xiaobo, Sun
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.199-209
    • /
    • 2023
  • Background: Due to the interrupted blood supply in cerebral ischemic stroke (CIS), ischemic and hypoxia results in neuronal depolarization, insufficient NAD+, excessive levels of ROS, mitochondrial damages, and energy metabolism disorders, which triggers the ischemic cascades. Currently, improvement of mitochondrial functions and energy metabolism is as a vital therapeutic target and clinical strategy. Hence, it is greatly crucial to look for neuroprotective natural agents with mitochondria protection actions and explore the mediated targets for treating CIS. In the previous study, notoginseng leaf triterpenes (PNGL) from Panax notoginseng stems and leaves was demonstrated to have neuroprotective effects against cerebral ischemia/reperfusion injury. However, the potential mechanisms have been not completely elaborate. Methods: The model of middle cerebral artery occlusion and reperfusion (MCAO/R) was adopted to verify the neuroprotective effects and potential pharmacology mechanisms of PNGL in vivo. Antioxidant markers were evaluated by kit detection. Mitochondrial function was evaluated by ATP content measurement, ATPase, NAD and NADH kits. And the transmission electron microscopy (TEM) and pathological staining (H&E and Nissl) were used to detect cerebral morphological changes and mitochondrial structural damages. Western blotting, ELISA and immunofluorescence assay were utilized to explore the mitochondrial protection effects and its related mechanisms in vivo. Results: In vivo, treatment with PNGL markedly reduced excessive oxidative stress, inhibited mitochondrial injury, alleviated energy metabolism dysfunction, decreased neuronal loss and apoptosis, and thus notedly raised neuronal survival under ischemia and hypoxia. Meanwhile, PNGL significantly increased the expression of nicotinamide phosphoribosyltransferase (NAMPT) in the ischemic regions, and regulated its related downstream SIRT1/2/3-MnSOD/PGC-1α pathways. Conclusion: The study finds that the mitochondrial protective effects of PNGL are associated with the NAMPT-SIRT1/2/3-MnSOD/PGC-1α signal pathways. PNGL, as a novel candidate drug, has great application prospects for preventing and treating ischemic stroke.

Shear-wave elasticity imaging with axial sub-Nyquist sampling (축방향 서브 나이퀴스트 샘플링 기반의 횡탄성 영상 기법)

  • Woojin Oh;Heechul Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.403-411
    • /
    • 2023
  • Functional ultrasound imaging, such as elasticity imaging and micro-blood flow Doppler imaging, enhances diagnostic capability by providing useful mechanical and functional information about tissues. However, the implementation of functional ultrasound imaging poses limitations such as the storage of vast amounts of data in Radio Frequency (RF) data acquisition and processing. In this paper, we propose a sub-Nyquist approach that reduces the amount of acquired axial samples for efficient shear-wave elasticity imaging. The proposed method acquires data at a sampling rate one-third lower than the conventional Nyquist sampling rate and tracks shear-wave signals through RF signals reconstructed using band-pass filtering-based interpolation. In this approach, the RF signal is assumed to have a fractional bandwidth of 67 %. To validate the approach, we reconstruct the shear-wave velocity images using shear-wave tracking data obtained by conventional and proposed approaches, and compare the group velocity, contrast-to-noise ratio, and structural similarity index measurement. We qualitatively and quantitatively demonstrate the potential of sub-Nyquist sampling-based shear-wave elasticity imaging, indicating that our approach could be practically useful in three-dimensional shear-wave elasticity imaging, where a massive amount of ultrasound data is required.

Measurement of a Phase Plate Simulates Atmospheric Turbulence Depending on Laser Power (레이저 출력에 따른 난류 모사 위상판 측정)

  • Han-Gyol Oh;Pilseong Kang;Jaehyun Lee;Hyug-Gyo Rhee;Young-Sik Ghim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.99-105
    • /
    • 2023
  • The performance of astronomical telescopes can be negatively affected by atmospheric turbulence. To address this issue, techniques for atmospheric turbulence correction have been developed, requiring the simulation of atmospheric turbulence in the laboratory. The most practical way to simulate atmospheric turbulence is to use a phase plate. When measuring a phase plate that simulates strong turbulence, a Shack-Hartmann wave-front sensor is commonly used. However, the laser power decreases as it passes through the phase plate, potentially leading to a weak laser signal at the sensor. This paper investigates the need to control the laser power when measuring a phase plate that simulates strong atmospheric turbulence, and examines the effects of the laser power on the measured wavefront. For phase plates with relatively high Fried parameter r0, the laser power causes a variation of over 10% in r0. For phase plates with relatively low r0, the laser power causes a variation of less than 5%, which means that the influence of the laser power is negligible for phase plates that simulate strong atmospheric turbulence. Based on the system described in this paper, a phase plate simulating strong atmospheric turbulence can be measured at a laser power of 5 mW or higher. Therefore, controlling the laser's output power is necessary when measuring a phase plate for simulating atmospheric turbulence, especially for phase plates with low r0 values.

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

Usefulness of Single Voxel Proton MR Spectroscopy in the Evaluation of Hippocampal Sclerosis

  • Kee-Hyun Chang;Hong Dae Kim;Sun-Won Park;In Chan Song;In Kyu Yu;Moon Hee Han;Sang Kun Lee;Chun-Kee Chung;Yang Hee Park
    • Korean Journal of Radiology
    • /
    • v.1 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • Objective: The purpose of our study was to determine the ability of H-1 MR spectroscopy (MRS) to lateralize the lesion in patients with hippocampal sclerosis. Materials and Methods: Twenty healthy volunteers and 25 patients with intractable temporal lobe epilepsy whose MR imaging diagnosis was unilateral hippocampal sclerosis were included. This diagnosis was based on the presence of unilateral atrophy and/or high T2 signal intensity of the hippocampus. Single-voxel H-1 MRS was carried out on a 1.5-T unit using PRESS sequence (TE, 136 msec). Spectra were obtained from hippocampal areas bilaterally with volumes of interest (VOIs) of 6.0 cm3 and 2.25 cm3 in healthy volunteers, and of either 6.0 cm3 (n = 14) or 2.25 cm3 (n = 11) in patients. Metabolite ratios of NAA/Cho and NAA/Cr were calculated from relative peak height measurements. The capability of MRS to lateralize the lesion and to detect bilateral abnormalities was compared with MR imaging diagnosis as a standard of reference. Results: In healthy volunteers, NAA/Cho and NAA/Cr ratios were greater than 0.8 and 1.0, respectively. In patients, the mean values of these ratios were significantly lower on the lesion side than on the contralateral side, and lower than those of healthy volunteers (p < .05). The overall correct lateralization rate of MRS was 72% (18/25); this rate was lower with a VOI of 6.0 cm3 than of 2.25 cm3 (64% versus 82%, p < .05). Bilateral abnormalities on MRS were found in 24% (6/25) of cases. Conclusion: Although its rate of correct lateralization is low, single-voxel H-1 MRS is a useful and promising diagnostic tool in the evaluation of hippocampal sclerosis, particularly for the detection of bilateral abnormalities. To improve the diagnostic accuracy of H-1 MRS, further investigation, including the use of a smaller VOI and measurement of the absolute amount of metabolites, are needed.

  • PDF

Reproducibility Evaluation of Deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis during radiation therapy for Left Breast cancer patients (좌측 유방암 환자의 방사선치료 중 환자의 호흡과 심장 위치 분석을 통한 Deep inspiration breath-hold(DIBH) 기법의 재현성 평가)

  • Jo, Jae Young;Bae, Sun Myung;Yoon, In Ha;Lee, Ho Yeon;Kang, Tae Young;Baek, Geum Mun;Bae, Jae Beom
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.297-303
    • /
    • 2014
  • Purpose : The purpose of this study is reproducibility evaluation of deep inspiration breath-hold(DIBH) technique by respiration data and heart position analysis in radiation therapy for Left Breast cancer patients. Materials and Methods : Free breathing(FB) Computed Tomography(CT) images and DIBH CT images of three left breast cancer patients were used to evaluate the heart volume and dose during treatment planing system( Eclipse version 10.0, Varian, USA ). The signal of RPM (Real-time Position Management) Respiratory Gating System (version 1.7.5, Varian, USA) was used to evaluate respiration stability of DIBH during breast radiation therapy. The images for measurement of heart position were acquired by the Electronic portal imaging device(EPID) cine acquisition mode. The distance of heart at the three measuring points(A, B, C) on each image was measured by Offline Review (ARIA 10, Varian, USA). Results : Significant differences were found between the FB and DIBH plans for mean heart dose (6.82 vs. 1.91 Gy), heart $V_{30}$ (68.57 vs. $8.26cm^3$), $V_{20}$ (76.43 vs. $11.34cm^3$). The standard deviation of DIBH signal of each patient was ${\pm}0.07cm$, ${\pm}0.04cm$, ${\pm}0.13cm$, respectively. The Maximum and Minimum heart distance on EPID images were measured as 0.32 cm and 0.00 cm. Conclusion : Consequently, using the DIBH technique with radiation therapy for left breast cancer patients is very useful to establish the treatment plan and to reduce the heart dose. In addition, it is beneficial to using the Cine acquisition mode of EPID for the reproducibility evaluation of DIBH.