• Title/Summary/Keyword: side wind

Search Result 557, Processing Time 0.027 seconds

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan;Shui-fu Chen;Yi Liu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

Aerodynamic Characteristics of Neighboring Building Exposed to Twisted Wind

  • Lei Zhou;KamTim Tse;Gang Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.241-263
    • /
    • 2022
  • The conventional wind and twisted-wind effect on aerodynamic properties of neighboring buildings arranged in side-by-side and tandem systems at 2B and 5B spacings are systematically investigated by large eddy simulation. Different physical interactions between different wind profiles and neighboring buildings will be deeply understood. The neighboring-building system under two different types of wind profiles, i.e., conventional wind profile (CWP), twisted wind profiles (TWP) with the maximum twisted angle of 30°, is used to evaluate the variation of physical mechanism between wind and buildings. Aerodynamic characteristics including mean and RMS pressure coefficient, and velocity field were systematically analyzed and compared between different scenario. It was found that the distribution of mean pressure, root-mean-square x velocity and the streamline of wind flow for TWP greatly deviated from CWP, and the effect of TWP on the downstream building, was drastically different from that of CWP, such as the size of vortexes after the lower stream building being bigger when exposed to TWP, and the mean pressure distribution on the building surfaces are also different. Moreover, evidence of buildings arranged in side-by-side and tandem configurations having interchangeable properties under TWP was also discovered, that two buildings being arranged side-by-side exposed to TWP could be identified as being arranged in tandem with a different wind twist angle, or vice versa.

Computational Investigation of Similarity Law and Wind Tunnel Testing for Side Jet Influence on Supersonic Missile Aerodynamics (초음속 유도탄의 측추력기 작동시 풍동실험을 위한 CFD 해석 연구)

  • Hong S. K.;Sung W. J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.87-90
    • /
    • 2002
  • Computational study has been undertaken to investigate the aerodynamic influence of side jet on a supersonic missile and to find a similarity condition between the flight condition and the wind tunnel testing. Tasks were performed to validate the existing Raytheon test body with side jet, to simulate the flow inside the supersonic wind tunnel, and to compare the flow fields between the missile in free flight and that in the wind tunnel. Then sub-scale model of body-tail configuration was analyzed to estimate the influence of the side jet on the missile components. It Is found that the influence of side Jet is not as significant on the tail region as on the body surface and a simple algebraic formula for aerodynamic coefficients accounting for the side jet as a point force may be cautiously utilized in setting up control logic.

  • PDF

Characteristic of Wind Flow around Building Structures for Wind Resource Assessment (풍자원 평가를 위한 건축물 주변의 유동특성)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Shin, Seung-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.50-58
    • /
    • 2011
  • To utilize wind resources effectively around buildings in urban area, the magnitudes of wind velocity and turbulence intensity are important, which means the need of the information about the relationship between the magnitude of wind velocity and that of fluctuating wind velocity. In the paper, wind-tunnel experiments were performed to provide the information about Characteristic of Wind flow around buildings with the spanwise distance and the side ratio of buildings as variables. For a single building with the side ratios of one and two, the average velocity ratio was 1.4 and the velocity standard deviation ratio ranged from 1.4 to 2.6 at the height of 0.02m at the corner of the windward side, in which flow separation occurred. For twin buildings with the side ratios of one and two, the velocity ratio ranged from 2 to 2.5 as the spanwise distance varied at the height of 0.02m, and the velocity standard deviation ratio varied near 1.25. For twin buildings with the side ratios of one and two, the maximum velocity ratio was 1.75 at the height of 0.6m, and the maximum velocity standard deviation ratio was 2.1. It was also found from the results of CFD analysis and wind-tunnel experiments that for twin buildings with the side ratios of one and two, the difference between the velocity ratio of CFD analysis and that of wind-tunnel experiments at streamwise distances was near 0.75.

Empirical formulations for evaluation of across-wind dynamic loads on rectangular tall buildings

  • Ha, Young-Cheol
    • Wind and Structures
    • /
    • v.16 no.6
    • /
    • pp.603-616
    • /
    • 2013
  • This study is aimed at formulating an empirical equation for the across-wind fluctuating moment and spectral density coefficient, which are needed to estimate the across-wind dynamic responses of tall buildings, as a function of the side ratios of buildings. In order to estimate an empirical formula, wind tunnel tests were conducted on aero-elastic models of the rectangular prisms with various aspect and side ratios in turbulent boundary layer flows. In this paper, criteria for the across-wind fluctuating moment and spectral density are briefly discussed and the results are analyzed mainly as a function of the side ratios of the buildings. Finally, empirical formulas for the across-wind fluctuating moment coefficient and spectral density coefficient according to variation of the aspect ratio are proposed.

Characteristics of the aerodynamic interference between two high-rise buildings of different height and identical square cross-section

  • Dongmei, Huang;Xue, Zhu;Shiqing, He;Xuhui, He;Hua, He
    • Wind and Structures
    • /
    • v.24 no.5
    • /
    • pp.501-528
    • /
    • 2017
  • In this work, wind tunnel tests of pressure measurements are carried out to assess the global aerodynamic interference factors, the local wind pressure interference factors, and the local lift spectra of an square high-rise building interfered by an identical cross-sections but lower height building arranged in various relative positions. The results show that, when the interfering building is located in an area of oblique upstream, the RMS of the along-wind, across-wind, and torsional aerodynamic forces on the test building increase significantly, and when it is located to a side, the mean across-wind and torsional aerodynamic forces increase; In addition, when the interfering building is located upstream or staggered upstream, the mean wind pressures on the sheltered windward side turn form positive to negative and with a maximum absolute value of up to 1.75 times, and the fluctuating wind pressures on the sheltered windward side and leading edge of the side increase significantly with decreasing spacing ratio (up to a maximum of 3.5 times). When it is located to a side, the mean and fluctuating wind pressures on the leading edge of inner side are significantly increased. The three-dimensional flow around a slightly-shorter disturbing building has a great effect on the average and fluctuating wind pressures on the windward or cross-wind faces. When the disturbing building is near to the test building, the vortex shedding peak in the lift spectra decreases and there are no obvious signs of periodicity, however, the energies of the high frequency components undergo an obvious increase.

Experimental investigation of Reynolds number effects on 2D rectangular prisms with various side ratios and rounded corners

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • v.21 no.2
    • /
    • pp.183-202
    • /
    • 2015
  • Experiments on two-dimensional rectangular prisms with various side ratios (B/D=2, 3, and 4, where B is the along-wind dimension, and D is the across-wind dimension) and rounded corners (R/D=0%, 5%, 10%, and 15%, where R is the corner radius) are reported in this study. The tests were conducted in low-turbulence uniform flow to measure the wind pressures on the surfaces of 12 models for Reynolds numbers ranging from $1.1{\times}10^5$ to $6.8{\times}10^5$. The aerodynamic force coefficients were obtained by integrating the wind pressure coefficients around the model surface. Experimental results of wind pressure distributions, aerodynamic force coefficients, and Strouhal numbers are presented for the 12 models. The mechanisms of the Reynolds number effects are revealed by analyzing the variations of wind pressure distributions. The sensitivity of aerodynamic behavior to the Reynolds number increases with increasing side ratio or rounded corner ratio for rectangular prisms. In addition, the variations of the mean pressure distributions and the pressure correlations on the side surfaces of rectangular prisms with the rounded corner ratio are analyzed at $Re=3.4{\times}10^5$.

Computational Investigation of Similarity Law and Wind Tunnel Testing for Side Jet Influence on Supersonic Missile Aerodynamics (초음속 유도탄의 측추력기 작동시 풍동실험을 위한 CFD 해석 연구)

  • Hong S. K.;Sung W. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.41-46
    • /
    • 2002
  • Computational study has been undertaken to investigate the aerodynamic influence of side jet on a supersonic missile and to find a similarity condition between the flight condition and the wind tunnel testing. Tasks were peformed to validate the existing Raytheon test body with side jet, to simulate the flow inside the supersonic wind tunnel, and to compare the flow fields between the missile in free flight and that in the wind tunnel. Then sub-scale model of body-tail configuration was analyzed to estimate the influence of the side jet on the missile components. It is found that the influence of side jet is not as significant on the tail region as on the body surface and a simple algebraic formula for aerodynamic coefficients accounting for the side jet as a point force may be cautiously utilized in setting up control logic.

  • PDF

On the Low Level Strong Wind Occurring at the Downwind Side of the Kumjeong Mountain. (금정산 풍하측 저고도의 강풍 현상)

  • 임상진;서광수
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.713-718
    • /
    • 1996
  • We identified two characteristic turbulent flow cases, weakening and strengthening, which appear at the downwind side. Observations were made two times, Dec. 2-3. 1995 and Feb. 13-14. 1996 at Pusan National University site located downwind side of Kumjeong mountain. Meteorological observation system, tethersonde, was adopted to present observation. In the case of the west wind which blows perpendicular to Sanghak mountain located westward from the site, the wind speed highly increased in exponential with height. Therefore, the low level wind speed was so weak just like Taylor(1988)'s review. While the wind speed was intensified at 200-400m layer when the northwest wind blows from the continental Siberian high. We suppose 기 is because of the strong vertical convergence of flow between the surface inversion layer and the upper one, and also the horizontal convergence along the saddle and valley between the two mountains, Kumjeong and Sanghak-because of Bernoulli's effect. The inversion layer existed at surface-l00m and 500-600m level and the strong wind existed at about 200-400m layer.

  • PDF