• Title/Summary/Keyword: sib analysis

Search Result 52, Processing Time 0.164 seconds

Verification of ET and AI Derived Offspring Using on the Genetic Polymorphisms of Microsatellite and Coat Color Related Genes in Jeju Black Cattle (제주흑우 집단에서 모색 관련 유전자와 microsatellite marker의 다형현상을 이용한 수정란이식 및 인공수정 유래 후대우 검증)

  • Han, Sang-Hyun;Ko, Jin-Cheul;Kim, Young-Hoon;Kim, Nam-Young;Kim, Jae-Hwan;Ko, Moon-Suck;Jeong, Ha-Yeon;Cho, In-Cheol;Yang, Young-Hoon;Lee, Sung-Soo
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.381-387
    • /
    • 2010
  • To find offspring of Jeju Black cattle (JBC) produced by embryo transfer (ET) and artificial insemination (AI), a molecular genetic study was carried out in candidate cattle populations collected from cattle farms in Jeju Island, Korea. The genetic marker set was composed of 11 ISAG microsatellite (MS) markers, 11 SAES MS markers selected by our preliminary analysis for population diversity of JBC and two major coat color related genes: MC1R and ASIP. The results showed a combined non-exclusion probability for first parent (NE-P1) that was higher than that recommended by ISAG (above 0.9995), and a combined non-exclusion probability for sib identity of $5.3{\times}10^{-10}$. Parentage analysis showed that the cases identified the candidate's father only (77.0%), mother only (54.0%), and both parents (40.5%) in the candidate offspring population. The ET and AI calves were identified as 14.7% in the in vitro fertilized eggs provided and 32.4% in total population, respectively. However, the result from ISAG marker analysis showed 3 identical allele-combinations in 7 calves, and that from ISAG/SAES MS marker combination also showed 1 identical allele-combination in 2 calves. Data from MS and coat-color gene analyses provided information for complete identification of all animals tested. Because the present JBC population was mostly bred using small nuclear founders through bioengineering techniques such as AI and ET, the genetic diversity levels obtained from MS analysis in the JBC population were relatively lower than those of other cattle populations, including Hanwoo. The results suggested that the more efficient marker combinations, including coat color related genotypes, should be studied and used for constructing a system for identification and molecular breeding of JBC as well.

Genetic Analysis of Carcass Traits in Hanwoo with Different Slaughter End-points (세가지 도축 종료 시점을 공변량으로 하는 한우 도체형질에 대한 유전능력 분석모형)

  • Choy, Y.H.;Yoon, H.B.;Choi, S.B.;Chung, H.W.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.703-710
    • /
    • 2005
  • Data from Hanwoo steers and bull calves were analyzed to see the phenotypic and genetic relationships between carcass traits from four different covariance models. Four models fit test station and test period as fixed effect of contemporary group and sire as random effect assuming paternal half-sib relationships among animals. Each model fits one of linear covariate (s) of different slaughter end points-age at slaughter in the first order, age at slaughter in the first and second order, slaughter weight or back fat thickness at 12-13th rib of cold carcass. Age at slaughter in its second order was not significant. Age at slaughter accounted for signifi- cant amount of genetic variances and covariances of carcass traits. Heritability estimates of back fat thickness, rib eye area, carcass weight, marbling score and dressing percentage were 0.34, 0.22, 0.24, 0.42 and 0.18, respectively at constant age basis. The genetic correlation between carcass weight and the other variables were all positive and low to high in magnitude. Genetic correlations between back fat thickness and rib eye area and between marbling score and dressing percentage were low but negative. Variance and covariance structure between these traits were shifted to a great extent when these variables were regressed on slaughter weight or on back fat thickness. These two covariates counteracted to each other but they adjusted each carcass variable or their interrelationship according to differential growth of body components, bone, muscle and fat. Slaughter weight tended to decrease genetic variances and covariances of carcass weight and between component traits and back fat thickness tended to increase those of rib eye area and between rib eye area and carcass weight.