• Title/Summary/Keyword: shrinkage stress

Search Result 379, Processing Time 0.024 seconds

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.

Curvature and Deflection of Reinforced Concrete Beams due to Shrinkgae (건조수축에 의한 철근콘크리트 보의 곡률 및 처짐)

  • 김진근;이상순;양주경;신병천
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.261-268
    • /
    • 1998
  • Deflections due to shrinkage are frequently ignored in design calculation. Especially for thin member, shrinkage often causes considerable deformations as wellas appreciable stress changes. Several methods for computing shringkage curvature have been proposed by many researchers. Some of the approximte methods widely used in the recent years are the equivalent tensile force method, Miller's method and Branson's method. These methods were, however, somewhat oversimplified and could be too conservative in the case of well cured concrete structure. In this paper, an approximate method for computing shrinkage curvature and deflection is proposed. Curvature due to shrinkage is derived from the requirements of strain compatibility and equilibrium of a section and the age-adjusted effective modulus method. The proposed method is verified by comparison with several experimental measurements. The correlations between calculated and measured curvatures is very good.

A Study on the Evaluating Shrinkage Cracking Properties of Concrete by Size of Specimen of Plat-Ring Restrained Test Method (판상-링형 구속시험방법의 시험체 치수에 따른 콘크리트 수축균열 특성 평가에 관한 연구)

  • Choi, Hyeong-Gil;Nam, Jeong-Soo;Na, Chul-Sung;Back, Yong-Kwan;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.581-584
    • /
    • 2008
  • In this study, it is willing to present that fundamental data for proposing quantitatively shrinkage cracking evaluation method such as plat-ring type restrained test method. To examine suitable size of specimen of plat-ring type restrained test method, Evaluated concrete about restrained shrinkage crack properties of numerical analysis of 3D solid element using the MIDAS program, drying shrinkage deformation, restrained shrinkage stress, crack area and crack point with inside ring diameter of specimen in 100mm, 150mm, 200mm and high of Specimen in 30mm, 50mm after curing in condition of constant temperature and usual habit of temperature 20${\pm}$3$^{\circ}$C, humidity 60${\pm}$5%. As a result, it was available about suitable estimation with inside ring diameter of specimen in more than 150mm and high of Specimen in 50mm. Hereafter, it is considered that the study concerning environmental condition and mixing factor in plat-ring type restrained test method is need.

  • PDF

A Study on the Shrinkage Stresses in Polymer Concrete Overlays (폴리머 콘크리트 오버레이의 수축응력에 관한 연구)

  • Jo, Young-Kug;Soh, Yang-Seob
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.197-205
    • /
    • 1997
  • The shrinkage of polymer concrete overlays to cement concrete causes interface shear, normal and axial stresses in the overlays. These can lead to deterioration of the polymer concrete overlays due to affection of adhesion polymer concrete and cement concrete. The shrinkage stress in the polymer concrete cause it to shorten and the shorting is measured: With the modulus of elasticity of the polymer concrete and strain known the stresses can be calculated. The purpose of this study is to provide the basic data of application of polymer concrete overlays such as bridge decks, highway and airport pavement repair and overlay materials. From the test results. It has been found that depending on the type polymer. overlay thickness, time after curing and temperature. the shrinkage stresses are eliminated by relaxation in time ranging from a few hours to a few days.

Time Dependent Behavior of Partially Prestressed Concrete Flexural Members (부분 프리스트레스트콘크리트 휨부재의 장기거동)

  • 김수만;이운재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.647-650
    • /
    • 2003
  • Under sustained loads, the deformation of a structure gradually increase with time and eventually may be much greater than its instantaneous value, This inelastic and time-dependent deformation causes increase in deflection and curvature, redistribution of stress and internal action, In this paper, time-dependent analysis with creep and shrinkage of uncracked and cracked partially prestressed concrete flexural members is presented.

  • PDF

Analysis of Thermal Deformation of Carbon-fiber Reinforced Polymer Matrix Composite Considering Viscoelasticity (점탄성을 고려한 탄소 섬유강화 복합재의 열 변형 유한요소 해석)

  • Jung, Sung-Rok;Kim, Wie-Dae;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.174-181
    • /
    • 2014
  • This study describes viscoelasticity analysis of carbon-fiber reinforced polymer matrix composite material. One of the most important problem during high temperature molding process is residual stress. Residual stress can cause warpage and cracks which can lead to serious defects of the final product. For the difference in thermal expansion coefficient and change of resin property during curing, it is difficult to predict the final deformed shape of carbon-fiber reinforced polymer matrix composite. The consideration of chemical shrinkage can reduce the prediction errors. For this reason, this study includes the viscoelasticity and chemical shrinkage effects in FE analysis by creating subroutines in ABAQUS. Analysis results are compared with other researches to verify the validity of the subroutine developed, and several stacking sequences are introduced to compare tested results.

Study on the Structure and the Physical Properties of Synthetic Fibers Treated with Organic Solvents (V) -The Shrinkage Behavior and Property Change of Woven Fabric Composed of Nylon 6 Filaments by Formic Acid Treatment- (용제처리에 의한 합성섬유의 구조와 물성에 관한 연구(V) -Formic Acid 처리에 의한 Nylon 6 Filament 직물의 수축거동 및 성질변화-)

  • Lee, Yang-Hun;Park, Suk-Chul
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.54-62
    • /
    • 1989
  • The woven fabric composed of nylon 6 filaments was treated with aqueous solutions (20, 30, 40, 50, 60%) of formic acid at 3$0^{\circ}C$ for 10 minutes under unrestrained condition, and the shrinkage behavior and some kinds of properties were examined. The shrinkages of the constituent yarns and fabric were increased with formic acid concentration, but they were lower than that of the original filaments because of fabric-structural factors. And the shrinkage of the warp was lower than that of the weft because of the residual stress from weaving process. By the restraint forces such as fabric-structural factors and residual stress, the constituent filaments were damaged partially at 60% of formic acid concentration and the degree of damage on the warp was greater than on the weft. And though the fabric count were increased overall, the spacing between the warps was decreased prior to the weft and eliminated nearly at 60% of formic acid concentration. The thickness, tensile strength, elongation, and handle value of fabric were increased overall with formic acid concentration excepting that the tensile strength for both the warp and weft directions and the elongation for the warp direction were decreased instead by the damage of yarns. But the crease recovery was decreased except the case of the weft direction at 60% of formic acid concentration.

  • PDF

Structure Development in Drawn Poly(trimethylene terephthalate) (연신에 의한 폴리(트리메틸렌 테레프탈레이트)의 구조 변형)

  • 전병환;김환기;강호종
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.477-483
    • /
    • 2003
  • The structure development of drawn poly(trimethylene terephthalate) PTT as a function of draw down ratio and drawing temperature was studied. The special effort was made to find out the effect of structural development on thermal properties and crystallinity in drawn PTT. The changes in shrinkage ratio and mechanical properties were understood base on the level of crystallinity and orientation of the drawn PTT. The stress induced crystallization caused the increase in glass transition temperature and the decrease in cold crystallization temperature and enthalpy. The crystallinity and orientation were dependent upon the level of applied stress level as well as chain flexibility at high drawing temperature. The drawing resulted in the increase of shrinkage ratio but it was minimized by increasing of crystallinity. The development of orientation resulted in increasing modulus and tensile strength while decreasing elongation at break.

A Study on the compensation margin on butt welding joint of large steel plates in shipyards (조선해양 구조물 주판의 Butt welding joint 수축에 관한 연구)

  • Kim, Jeongtae;Lee, Daechul;Jeong, Hyomin;Chung, Hanshik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.461-466
    • /
    • 2013
  • This paper examines the characteristics of butt welding joint shrinkage for shipbuilding and marine structures main plate. The shrinkage strain of butt welding joint which is caused by the process of heat input and cooling, results in the difference between dimensions of the actual parent metal and the dimensions of design. This, in turn, leads to poor quality in the production of ship blocks and reworking through period of correction brings about impediment on improvement of productivity. Through experiments on butt welding joint's shrinkage strain on large structures main plate, the deformation of welding residual stress in the form of I, Y, V was obtained. In addition, the results of experiments indicate that there is limited range of shrinkage in the range of 1 ~ 2 mm in 11t ~ 21.5t thickness and the effect of heat transfer of weld appears to be limited within 1000mm based on one side of seam line so there was limited impact of weight of parent metal on the shrinkage. Finally, it has been learned that Shrinkage margin needs to be applied differently based on groove phenomenon in the design phase in order to minimize shrinkage.