• 제목/요약/키워드: shrinkage strength

검색결과 1,091건 처리시간 0.025초

보통 및 저열시멘트를 이용한 고강도 콘크리트의 자기수축응력 및 건조수축응력 특성 (The Properties of Stress Induced by Autogenous Shrinkage and Dry Shrinkage for High Strength Concrete Using Type I and Type IV Cement)

  • 이웅종;엄태선;이종열
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.17-20
    • /
    • 2005
  • In this study, the properties of autogenous shrinkage stress and dry shrinkage stress for high strength concrete using Type I and Type IV cement were discussed. According to experimental results, autogenous shrinkage stress of SN30(the high strength concrete using type I cement) shows values higher than SL30(the high strength concrete using type IVcement). It is observed that the total shrinkage stress of SN30 is higher than that of SL30, because the ratio of autogenous shrinkage stress of the total shrinkage stress is relatively large. Therefore, SL30 is more effective to control or minimize the cracking of the high strength concrete, compared with SN30.

  • PDF

초기재령 콘크리트의 부등건조수축과 자기수축에 관한 연구 (Differential Drying Shrinkage and Autogenous Shrinkage of Concrete at Early Ages)

  • 김진근;이칠성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.309-314
    • /
    • 1998
  • The moisture diffusion and self-desiccation cause the differential drying shrinkage and autogenous shrinkage at early ages, respecitvely. Thus total shrinkage strain includes the differential drying shrinkage and self-desiccation shrinkage. Thus in this study the shrinkage strain was measured at various positions in the exposed concrete and in the sealed concrete the self-desiccation shrinkage was measured. In low-strength concrete, the differential drying shrinkage increases very rapidly, but self-desiccation shrinkage is very small. But high-strength concrete shows the reverse result. And the analytical results for differential drying shrinkage were in good agreement with the test results.

  • PDF

재유화형 분말수지 출입 폴리머 시멘트 모르타르의 건조수축 및 강도특성 (Drying Shrinkage and Strength Properties of Polymer-Modified Mortars Using Redispersible Polymer Powder)

  • 연규석;주명기;이현종;김성기;이지원
    • 한국농공학회논문집
    • /
    • 제48권1호
    • /
    • pp.51-60
    • /
    • 2006
  • This study was conducted to investigate experimentally the drying shrinkage and the strength properties of redispersible SBR and PAE powder-modified mortars. Polymer-cement ratio, content of shrinkage-reducing agent and antifoamer content were manipulated as the experimental variables. The peculiarity of this study is to obtain a high early-age strength by using the portland cement and alumina cement with the ratio of 8 : 2. Until 7 days of age, the drying shrinkage remarkably increased up to $1\~2\times10^{-4}$, while it tended to decrease as the ratio of polymer to cement ratio and the content of shrinkage-reducing agent increased. Polymer-cement ratio was effective in improving the flexural, tensile and adhesive strengths: As the ratio increased, the strengths correspondingly increased. The flexural strength was in the range of $7\~11$ MPa, the tensile strength was $3.5\~5$ MPa and the adhesive strength was $1.2\~3.9$ MPa. On the other hand, the compressive strength tended to decrease as the polymer-cement ratio increased, and it was in the range of $23\~39$ MPa. All strengths, flexural, tensile, adhesive and compressive strengths, decreased as the content of powder shrinkage-reducing agent increased. It turned out that the polymer-cement ratio influenced more on the behavior of drying shrinkage and the properties of strength than the powder shrinkage-reducing agent did.

배합에 따른 초고강도 콘크리트의 자기수축 특성 (Autogenous Shrinkage Properties of Ultra High Strength Concrete According to the Mixing Design)

  • 하정수;백민수;이주하;손유신;이승훈;정상진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.79-80
    • /
    • 2011
  • In this study, W/B that affect the strength and shrinkage were 4 level(14.5~11.5%), so that the and the physical and shrinkage properties were verified. And the shrinkage formula is suggested at the age of 91. The results showed that the strength of W/B 12.5% was the highest strength. And as W/B decreased, the shrinkage ratio increased. The autogenous shrinkage was rapidly decreased after 28 days.

  • PDF

수축저감제를 사용한 콘크리트의 물성변화 및 건조수축 저감 특성 (Physical Properties and Drying Shrinkage of Concrete Using Shrinkage Reducing Admixtures)

  • 한천구;송승헌
    • 한국건축시공학회지
    • /
    • 제5권3호
    • /
    • pp.101-107
    • /
    • 2005
  • This paper reports the contribution of Shrinkage reducing admixture(SRA) to the physical properties and drying shrinkage of concrete. Dosage of SRA is varied with. For the properties of fresh concrete, an increase in SRA dosage results in a decrease in fluidity and air content, while setting time is accelerated. For the properties of hardened concrete, the incorporation of mineral admixture leads to a decrease in compressive strength at early age, whereas after 28 days, the incorporation of fly ash(FA) and blast furnace slag(BS) has greater compressive strength than conventional concrete without admixture. The use of SRA results in a decrease in compressive strength. The incorporation of SRA with every $1\%$ increase causes the decrease of compressive strength by as much as $3\~6\%$. For drying shrinkage properties, the incorporation of FA and BS reduces drying shrinkage slightly. The use of SRA also decreases drying shrinkage. Every $1\%$ of increase in SRA dosage can reduce drying shrinkage by as much as $10\~15\%$

자극제 및 유화처리에 따른 폐식용유 사용 고강도 모르타르의 자기수축 저감 특성 (Autogenous Shrinkage of High Strength Mortar According to Stimulant and Emulsified Waste Oil)

  • 한상윤;손호정;이동규;전충근;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 춘계 학술논문 발표대회 1부
    • /
    • pp.81-82
    • /
    • 2011
  • This paper is to compare and analyze WOE created by emulsifying waste oil & WOES added by stimulant with the existing SR in order to solve the problem of strength and reduction in fluidity occurring in time of the use of waste oil to reduce the autogenous shrinkage of high strength mortar. As experimental results, in case of WOE, there almost never happened a drop in fluidity at 1% replacement and compressive strength also showed the strength value similar to Plain. On the other hand, the effect of strength improvement consequent upon the use of stimulant was found to be insufficient. The change of autogenous shrinkage generally showed a better reduction effect in shrinkage comparing to Plain. In case of WOE1, reduction effect in autogenous shrinkage was found to be more excellent than the existing SR. Accordingly, WOE1 is analyzed to be desirable if reduction in autogenous shrinkage, strength & up to the aspect of fluidity are taken into consideration.

  • PDF

Early-Age Properties of Polymer Fiber-Reinforced Concrete

  • Myers, Daniel;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • 제2권1호
    • /
    • pp.9-14
    • /
    • 2008
  • The cracking problem in concrete is widespread and complex. This paper reviews the problem and focuses on those parts of the problem that are more readily solved. Polymer fibers are shown to have promise in several important areas of the cracking problem. To investigate one of these areas of the cracking problem more completely, an experimental research program focusing on the early-age properties of fibers was carried out. This study researched the properties of four polymer fibers; two of the fibers were macrofibers, and two were microfibers. Each fiber was tested at several dosage rates to identify optimum dosage levels. Early-age shrinkage, long-term shrinkage, compressive strength, and tensile strength were investigated. Long-term shrinkage and strength impacts from the polymer fibers were minimal; however, the polymer fibers were shown to have a great impact on early-age shrinkage and a moderate impact on early-age strength.

건조수축 해석을 통한 종이의 벌크 및 강직성 향상 (Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis)

  • 이진호;박종문
    • 펄프종이기술
    • /
    • 제43권4호
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

초고강도 강섬유보강 콘크리트의 수축특성 (Shrinkage Properties of Ultra High Strength Steel Fiber Reinforced Concrete)

  • 고경택;배장춘;이건철;강수태;김성욱;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.647-650
    • /
    • 2005
  • This paper is to investigate the shrinkage properties of ultra high strength concrete(UHSC) incorporating $5\%$ of expansive additives(EA) along with $1\%$ of shrinkage reducing agent(SRA). UHSC subjected to steam curing and incorporated with steel fiber exhibited higher compressive strength than control UHSC by as much as50MPa at 7days, while at 28days, noticeable change in compressive strength was not observed between UHSC mixtures. Control UHSC subjected to steam curing had a $922{\times}10^6$ of autogenous shrinkage strain value, which was 6.7 times of drying shrinkage strain value at 42 days. The combination of EA and SRA resulted in a decrease in autogenous shrinkage by as much as half of control mixture. Steam curing contributed to the reduction of autogenous shrinkage by as much as $11\%$ compared with that of standard curing.

  • PDF

콩기름을 사용한 고강도 콘크리트의 자기수축 특성 분석에 관한 연구 (A Study on the Reduction of Autogenous Shrinkage of Hgh-Strength Concrete using Bean Oil)

  • 송일범;홍석민;이충섭;임춘근;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.101-105
    • /
    • 2009
  • The purpose of this study is to reduce autogenous shrinkage of high-strength concrete. Previous studies were investigated to measure the effects of reductions to autogenous shrinkage when applying bean oil to concrete. The results of the study showed that as the mixture rate of BO increased, fluidity decreased and air quantity decreased slightly. In early age, compressed strength increased compared to Plain while decreased in long-term age. As an autogenous shrinkage characteristic, reduction effect increased according to increase in mixture rate. When mixture rate is 1%, approximately 30% decreased compared to Plain in BO. At 2%, BO decreased by about 32%. In addition, in the case of BO, autogenous shrinkage was shown to decrease compared to expansive additive and shrinkage-reducing agent.

  • PDF