• Title/Summary/Keyword: shrinkage strain

Search Result 277, Processing Time 0.04 seconds

COMPARISON OF POLYMERIZATION SHRINKAGE AND STRAIN STRESS OF SEVERAL COMPOSITE RESINS USING STRAIN GUAGE (스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교)

  • Kim, Young-Kwang;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.516-526
    • /
    • 2004
  • Polymerization shrinkage of photoinitiation type composite resin cause several clinical problems. The purpose of this study was to evaluate the shrinkage strain stress, linear polymerization shrinkage, compressive strength and microhardness of recently developed composite resins. The composite resins were divided into four groups according to the contents of matrix and filler type. Group I : $Denfil^{TM}$(Vericom, Korea) with conventional matrix, Group II : $Charmfil^{(R)}$(Dentkist, Korea) with microfiller and nanofller mixture, Group III : $Filtek^{TM}$ Z250(3M-ESPE, USA) TEGDMA replaced by UDMA and Bis-EMA(6) in the matrix, and Group IV : $Filtek^{TM}$ Supreme(3M-ESPE, USA) using pure nanofiller. Preparation of acrylic molds were followed by filling and curing with light gun. Strain gauges were attached to each sample and the leads were connected to a strainmeter. With strainmeter shrinkage strain stress and linear polymerization shrinkage was measured for 10 minutes. The data detected at 1 minute and 10 minutes were analysed statistically with ONE-way ANOVA test. To evaluate the mechanical properties of tested materials, compressive hardness test and microhardness test were also rendered. The results can be summarized as follows : 1. Filling materials in acrylic molds showed initial temporary expansion in the early phase of polymerization. This was followed by contraction with the rapid increase in strain stress during the first 1 minute and gradually decreased during post-gel shrinkage phase. After 1 minute, there's no statistical differences of strain stress between groups. The highest strain stress was found in group IV and followed by group III, I, II at 10 minutes-measurement(p>.05). In regression analysis of strain stress, group III showed minimal inclination and followed by group II, I, IV during 1 minute. 2. In linear polymerization shrinkage test, the composite resins in every group showed initial increase of shrinkage velocity during the first 1 minute, followed by gradually decrease of shrinkage velocity. After 1 minute, group IV and group III showed statistical difference(p<.05). After 10 minutes, there were statistical differences between group IV and group I, III(p<.05) and between group II and group III(p<.05). In regression analysis of linear polymerization shrinkage, group II showed minimal inclination and followed by group IV, III, I during 1 minute. 3. In compressive strength test, group III showed the highest strength and followed by group II, IV, I. There were statistical differences between group III and group IV, I(p<.05). 4. In microhardness test, upper surfaces showed higher value than lower surfaces in every group(p<.05).

  • PDF

Evaluation of Shrinkage Strain of Alkali-Activated Slag Concrete (알칼리활성 슬래그 콘크리트의 건조수축 변형률 평가)

  • Yang, Keun-Hyeok;Seo, Eun-A
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.593-599
    • /
    • 2013
  • The unrestrained shrinkage strain of alkali-activated (AA) slag concrete was examined and compared with design equations specified in code provisions and empirical equations proposed by Yang et al. The main parameters investigated were the water-to-binder ratio (W/B), unit water content and fine aggregate-to-total aggregate ratio (S/a). Test results revealed that shrinkage strain of AA slag concrete is nearly proportional to the W/B ratio, whereas its time function is independent of the W/B ratio. The shrinkage strain of AA slag concrete increased significantly when the unit water content is above $185kg/m^3$, whereas it is marginally affected by the S/a ratio. The design equation of ACI 209 considerably overestimates the shrinkage behavior of AA slag concrete, whereas CEB-FIP equation tends to underestimate the shrinkage at the age more than 28 days. The empirical equation of Yang et al. is in better agreement with test results, showing that values of mean and standard deviation of error coefficients obtained from each specimen are 016 and 0.07, respectively.

A Characteristic of Autogenous shrinkage and Dry shrinkage for High Performance Concrete Using Type I and Type IV Cement (1종 및 4종시멘트를 이용한 고성능 콘크리트의 자기수축 및 건조수축 특성)

  • Lee Woong-Jong;Ryu Jae-Sang;Lee Jong-Ryul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.561-564
    • /
    • 2004
  • In this study, the properties of autogenous shrinkage and dry shrinkage for high performance concrete using Type I and Type IV cement were discussed. According to experimental results, autogenous shrinkage of SN30(the high performance concrete using type I cement) shows values higher than SL30( the high performance concrete using type IV cement). But the dry shrinkage of SN30 is almost the same as SL30. It is observed that the total shrinkage strain of SN30 is higher than that of SL30, because the ratio of autogenous shrinkage of the total shrinkage is relatively large. Therefore, SL30 is more effective to control or minimize the cracking of the high performance concrete, compared with SN30.

  • PDF

A Relationship between Drying Shrinkage and Water Potential (콘크리트의 건조수축과 수리에너지의 상관관계)

  • 한만엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.58-61
    • /
    • 1992
  • Water potential which controls miosture movement in concrete is a kind of stress which causes concrete shrinks or expands. Therefore, there is a straightforward relationship between the water potential and the shrinkage strain. Explicit equations which show the relationships between the two parameters were derived through rational process. Two micro mechanisms among three shrinkage mechanisms were considered in the theory. Thermocouple psychrometer were embedded in a concrete slab to measure the water potential and also to find a correlation with the shrinkage. The test results prove the validity of the theory, and show the way to utilize the delived equations.

  • PDF

Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames (부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete (콘크리트 건조수축 측정 방법 및 예측 모델에 대한 비교)

  • Yang, Eun-Ik;Kim, Il-Sun;Yi, Seong-Tae;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, the drying shrinkage strains were compared of 24~60 MPa concrete specimens subjected to various curing conditions and measurement methods were compared. And, the applicability of the test and prediction methods were investigated. According to the results, drying shrinkage was significantly reduced in 28 day curing condition. In the sealed curing case, drying shrinkage strain from demolding time was identical to the one of the standard curing case for low strength concrete, however, drying shrinkage strain was greatly increased than the standard case for high strength case because of the effect of autogenous shrinkage. The efficient measurement was possible using the embedded gage for concrete drying shrinkage, but, the measured value by contact gage was lower than the one by the embedded gage. The test results agreed with EC2 model better than the other.

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.

A Study on Physical Properties of Mortar Using Shrinkage Reducing Agent (수축저감제를 사용한 모르터의 물성에 관한 연구)

  • 이승한;이종석;이순환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.103-107
    • /
    • 1995
  • The intention of this study is to reduce the drying shrinkage of the cement mortar using the shrinkage reducing agent and the inorganic admixture. In this experiment the drying shrinkage strain, rate of weight loss and strength have been measured depending on age using the motar specimen. The result show that the usage of shrinkage reducing agent up to 1.5% will give an effect of approximately 30% without loss of strength, and the efficiency will increase together with the inorganic admixture. Also, as the amount of shrinkage reducing agent increases, the rate of weight loss increases. Drying shrinkage reduces at the same rate of weight loss.

  • PDF

The Effect of Internal Restraint of Rebar in Shrinkage Stress Analysis of Concrete Slab in Multistory Building (고층건물 콘크리트 슬래브의 건조수축응력 해석에서 철근의 구속효과)

  • Kim Han-Soo;Kim Jae-Keun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.496-499
    • /
    • 2006
  • In this study, a practical method of shrinkage stress analysis on concrete slab in multi-story building is proposed, which considers both internal restraint and external restraint variation resulting from construction sequence. The shrinkage stress due to external restraint is obtained by multiplying relaxation coefficient to elastic shrinkage stress. The additional shrinkage stress due to internal restraint is obtained by residual strain of the elastic analysis. A verification example was analyzed and compared by the proposed method and commercial analysis program that is capable of time-dependent analysis of concrete. The results of 10-story example building show that the internal restraint of reinforcement increases the shrinkage stress considerably at the slabs under loose external restraint.

  • PDF