• 제목/요약/키워드: shrinkage method

검색결과 744건 처리시간 0.026초

광물질 혼화재가 PSC 교량용 그라우트의 특성에 미치는 영향 (Effects of Mineral Admixture on the Characteristics of Grout for PSC Bridge)

  • 고경택;류금성;안기홍;강수태
    • 한국건설순환자원학회논문집
    • /
    • 제2권1호
    • /
    • pp.26-33
    • /
    • 2014
  • 본 연구에서는 PSC 교량용 고품질 그라우트를 개발하기 위한 기초 자료로 활용하기 위해 그라우트의 결합재로 광물질 혼화재의 종류, 치환율 및 사용방법이 유동성, 블리딩률, 체적변화 및 압축강도에 미치는 영향에 대해 검토하였다. 광물질 혼화재 종류와 치환율에 대해 검토한 결과, 플라이애시는 유동성을 향상시키나, 블리딩과 수축 저감에 효과가 거의 없는 것으로 나타났다. 이와 반대로 고로슬래그와 실리카퓸은 유동성을 저하시키나 블리딩과 수축 저감에 효과가 큰 것으로 나타났다. 광물질 혼화재를 조합사용한 경우에 대해 검토한 결과, 플라이애시와 고로슬래그를 조합사용한 경우 유동성은 양호하나, 블리딩과 수축이 크게 증가하고, 고로슬래그와 실리카퓸을 조합사용한 경우에는 블리딩과 수축이 감소하나, 유동성이 크게 저하되는 것으로 나타났다. 이에 비해 플라이애시와 실리카퓸을 조합사용한 그라우트는 유동성이 양호하고, 블리딩과 수축 저감에도 효과적으로 나타났다. 이상의 결과로부터 광물질 혼화재의 종류, 치환율 및 사용방법에 따라 그라우트의 유동성, 블리딩과 체적변화에 미치는 영향이 다른 것으로 분석되었다. 따라서 PSC용 그라우트에 광물질 혼화재를 사용하기 위해서는 이런 영향을 고려하여 선정할 필요가 있는 것으로 판단된다.

울트라파인 플라이 애시 혼입률에 따른 VES-LMC의 초기거동 특성 (Early-Age Deformation of Very-Early Strength Latex- Modified Concrete with Ultra-Fine Fly Ash Contents)

  • 최판길;박원일;윤경구;이봉학
    • 한국산학기술학회논문지
    • /
    • 제11권3호
    • /
    • pp.1040-1046
    • /
    • 2010
  • 급속경화 콘크리트의 가장 큰 단점은 단시간 내에 발생하는 급격한 수화발열 반응으로 인해 초기팽창이나 수축이 매우 크게 일어나 균열이 발생할 가능성이 높다는 것이다. 그러나 플라이 애시가 사용되면 콘크리트의 수화열을 낮출 수 있으므로 초기팽창과 수축을 현저히 줄일 수 있어 균열발생 억제에 효과적일 수 있다. 초속경 라텍스개질 콘크리트(VES-LMC)는 우수한 재료특성에도 불구하고, 재료 자체의 높은 수화열로 인해 균열이 발생하는 사례가 보고되고 있다. 따라서 본 논문에서는 플라이 애시를 VES-LMC에 적용할 수 있는 방법을 고안하여, 균열에 대한 안정성을 확보하기 위한 연구를 수행하였다. 울트라파인 플라이 애시(Ultra-Fine Fly Ash ; UFFA)를 사용하여 조기강도 저하의 단점이 극복된 조건에서, 초기 수화열을 낮추고 수축을 저감하여 균열안정성을 확보할 수 있도록 하였다. 실험결과 조기 압축강도는 UFFA 혼입률이 증가함에 따라 다소 감소하지만, 재령 28일 강도는 통계학적으로 유사한 것으로 나타났다. 초기수축 실험결과 UFFA가 단위시멘트량대비 15%에서 20%까지 치환되면 최대수축을 43~47%까지 줄일 수 있어 초기수축 억제에 매우 효과적이므로 균열에 대한 안정성을 확보할 수 있는 것으로 나타났다.

박판 패널 용접부의 용접 기법에 따른 좌굴 변형에 관한 연구 (Evaluation of Buckling Distortion for the Thin Panel Welded Structure According to Welding Processes)

  • 신상범;이동주;이주성
    • Journal of Welding and Joining
    • /
    • 제26권3호
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this study is to propose the proper fillet welding process for preventing the buckling distortion in thin panel welded structure. In order to do it, a heat input model for laser hybrid welding process was developed using FEA and experiment. The principal factors controlling the angular distortion and longitudinal shrinkage force caused by FCA and laser hybrid welding were identified as the welding heat input and weld rigidity using FEA. The predictive equations of angular distortion and longitudinal shrinkage force for each welding process were formulated as a function of the principal factors proposed. With the predictive equations, the buckling distortion at the thin panel welded structure with welding process was evaluated and compared using nonlinear buckling analysis and STEM(simplified thermo elastic method). Based on the results, the best way to prevent the buckling distortion at the given welded panel structures was identified as an intermittent FCA welding.

준설토의 건조수축에 의한 강도증가 특성과 지지력에 관한 연구 (A Study on Characteristics of Strength Increase and Bearing Capacity in Dredged and Reclaimed Soil due to Desiccation Shrinkage)

  • 유남재;이종호;이명욱;김현주
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.101-111
    • /
    • 2000
  • This research is results of experimental and numerical works on characteristic of strength increase and bearing capacity in dredged and reclaimed soil due to desiccation shrinkage. For a soil sampled from southern coastal area in Korea, basic soil property tests and standard consolidation test with falling head permeability tests were carried out to obtain consolidational characteristics of soil. Double cone penetration test, laboratory vane test and unconfined compression test were also performed to investigate the change of shear strength with degree of desiccation. Model tests were performed in 1G environment and 30G level artificially accelerated condition by using the centrifuge model test facilities to investigate the bearing capacity of desiccated ground. Test results were analyzed by using the theoretical and load-settlement characteristics method proposed by Meyehof & Hanna(1978). On the other hands, the numerical technique, using the finite strain consolidation theory considering the effect of desiccation was used to estimate the appropriate time of using heavy construction equipments in field with respect to strength increase due to desiccation.

  • PDF

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • 제52권3호
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

버블시트 피복양생법에 의한 소성 및 건조수축 균열저감 (Plastic and Drying Shrinkage Cracking Reduction by the Bubble Sheet Curing)

  • 이정교;한천구
    • 한국건축시공학회지
    • /
    • 제16권3호
    • /
    • pp.211-217
    • /
    • 2016
  • 본 연구에서는 2015년 가을철 실제 시공중인 고층 아파트를 대상으로 1중 백색 버블시트로 타설된 콘크리트의 표면을 덮어주는 버블시트 피복양생 공법과 표면을 노출한 채로 양생없이 유지하는 표면노출 방법간을 비교하여 소성 및 건조수축균열의 저감정도를 분석하였다. 실험 결과, 버블시트를 시공하였을 경우, 수화열 및 적산온도는 표면노출보다 약간 높았고, 바닥 균열의 갯수, 길이, 최대 균열폭, 균열 면적 모두 현저하게 적은 값이 측정되었다. 따라서 가을철 버블시트를 타설된 콘크리트 표면에 적용 할 경우에는 소성 및 건조수축균열을 획기적으로 방지할 수 있는 효과적인 표면피복 양생공법인 것으로 판단되었다.

Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques

  • Gong, Yuan Juan;Sui, Ying;Han, Chung Su;Ning, Xiao Feng
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.34-42
    • /
    • 2016
  • Purpose: This study was performed to improve the drying quality and drying rate of ginseng slices by combining microwave and far-infrared drying techniques. Methods: Based on single-factor experiments and analyses, a quadratic regression orthogonal rotation combination design was adopted to study the effects of the moisture content at the conversion point between the microwave and far-infrared techniques, the ginseng slice thickness and the far-infrared drying temperature on the chip drying time, the surface color difference value, the nutritional composition and the surface shrinkage rate index. Results: Compared to the far-infrared drying alone, the combined microwave and far-infrared drying resulted in an increase in the saponin content of the ginseng slices and reductions in the drying time, surface color difference, and shrinkage rate. Conclusions: We established a mathematical model of the relationships between the surface shrinkage rate index and the experimental factors using the multi-objective nonlinear optimization method to determine the optimal parameter combination, which was confirmed to be the following: microwave and far-infrared moisture contents of 65%, a ginseng slice thickness of 1 mm, and a far-infrared drying temperature of $54^{\circ}C$.

유전알고리듬을 이용한 사출성형 공정조건 최적화 (Optimization of Processing Conditions in Injection Molding Using Genetic Algorithm)

  • 최원준;신효철;곽신웅
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2543-2551
    • /
    • 2000
  • Precision injection molding is an important technology for improving productivity and lowering costs in the fields of medical components, lenses and electrical connectors. The quality of injection molded parts is affected by various processing conditions such as filling time and packing pressure profile. It is difficult to consider all the variables at the same time for prediction of the quality. In this study, the genetic algorithm was used to obtain the optimal processing conditions for minimizing the volumetric shrinkage of molded parts. For a higher convergence rate, the method of design of experiments was used to analyze the relationship between processing conditions and volumetric shrinkage of molded parts, which served as analysis tool for the capability of searching optimal processing conditions but also greatly reduces the calculation time by utilizing the information of searching area. As a practical example, compact disks that require micron-level precision were chosen for the study.

연속 정련축소 장치의 특성 연구 -로터드럼형과 컨베이어형- (A Study on the Characteristics of Continuous Scouring and Shrinking Equipment -Rota-drum and conveyor type-)

  • 허만우;서말용
    • 한국염색가공학회지
    • /
    • 제12권1호
    • /
    • pp.68-75
    • /
    • 2000
  • In this study, polyester DTY faille(yoryu) and N/NP microfiber fabrics were pretreated (desizing, scouring and shrinking) by Continuous Scouring and Shringking Equipment with rota-drum and conveyor type in which types were different with retaining method. The results were as follows. The shrinkage ratio of wp/wf direction of DTY fabrics scoured by conveyor type was 1.5/23% higher than those by rota-drum type at $97^\circ{C}$ with 10min. treatment. In this case, The shrinkage ratio of wp/wf direction by those types was about 15/27%, respectively. The shrinkage ratio of wp/wf direction of N/NP microfiber fabrics scoured by conveyor type was 1.5/23% higher than that by rota-drum type at $97^\circ{C}$ with 10min. treatment. The size add-on of DTY fabrics scoured at $97^\circ{C}$ with 10min. treatment by conveyor type and by rota-drum type were 0.15% and 0.42%, respectively. The size add-on of DTY fabric treated by rota-drum type decreased until 9min. of treated time, but increased after 9min. The size add-on of N/NP microfiber fabrics treated by conveyor type was decreased by increasing temperature and treated time, while the size add-on of that treated by rota-drum type was decreased until 6min. treated time and increased after 6min. The size add-on of N/NP microfiber fabrics treated by conveyor type at $97^\circ{C}$ for 10min. was 0.3% lower than that by rota-drum type.

  • PDF

(Ti1-xAlx)N계 질화물의 소결특성에 미치는 Co, Co-Ti 금속결합제의 영향 (Effects of Co-Ti Addition on the Sintering Characteristics of (Ti1-xAlx)N Ntride Powder)

  • 이영기;손용운
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.177-185
    • /
    • 1998
  • The purpose of this research is to investigate the effects of Co, Co-Ti addition on the sintering characteristic of $(Ti_{1-x}Alx)N$ material synthesized by the direct nitriding method for a application as a cermet material. The observed shrinkage rates of $(Ti_{1-x}Alx)N$ pellets increase with the additive (Co, Co-Ti) content, temperature and time, and also the pellets with the same additive content exhibit the shrinkage behavior that depends on the Ti/Al ratio. However, although the shrinkage rates in this study is the mast higher (36%), the density of the sintered $(Ti_{1-x}Alx)N$ pellet is below 80% density in theory because of the partial segregation and the dense band defect of AlCo compound. Consequentely, it is considered that Co was not effective as a binder material because the wettability of liquid Co metal on $(Ti_{1-x}Alx)N$ materials is poor, In $(Ti_{1-x}Alx)N$ with Ti-Co additive, the stoichiometric TiN is transformed by the under-stoichiometric TiNx(x<1.0) during sintering, leading to the good properties such as hardnees and hot oxidation.

  • PDF