• 제목/요약/키워드: shrinkage cracks

검색결과 182건 처리시간 0.072초

콘크리트 표면차수벽형 석괴댐(CFRD)의 누수특성에 관한 사례연구 (A Case Study on the Leakage in Concrete Face Rockfill Dam)

  • 방돈석;신창건;이강용;안상로
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.197-202
    • /
    • 2003
  • The leakage quantity through concrete facing of Concrete Face Rockfill Dam(CFRD) is very small due to its low permeability of intact concrete. Even though the concrete facing is well designed and constructed, fine cracks can be generated due to effects of thermal and drying shrinkage. Therefore, it can be said that the leakage from the CFRD is subjected to not permeability of intact concrete but poor joints, cracks and foundation rocks. The Safety of a dam on leakage was evaluated based on the comparison between apparent permeability estimated and leakage quantity measured. The above method can be concluded to give a good direction for the evaluation of safety on CFRD in maintenance aspects as design and construction technology is improved with the accumulation of leakage data.

  • PDF

교량 확폭시 RC 상판 접합부의 전단강도에 관한 실험적 연구 (An Experimental Study on the Shear Strength of Construction Joints of RC Slabs at Widened Bridges)

  • 이승용;조병완;장동일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.182-187
    • /
    • 1993
  • Recent increasing traffic volumes have made many bridges on highway be widened. In widening of existing bridges, construction joints between old and new parts of concrete slabs are subjected to repeated traffic loads during placing and during of concrete. Therefore, the main goal of this paper is given to investigate the variation of the shear strength of widening deck. As a result, the occurrence of cracks in vibrating specimen is faster than that of non-vibrating one, and most of cracks are occurred at new concrete. And the difference of shear strength in vibrating specimen is larger than non-vibrating one, but the difference is negligible. Also, it shows the same result about direct and non-shrinkage joint specimen test.

  • PDF

지하구조물을 위한 수밀콘크리트의 개발 및 실용화 (Development and Application of Low Permeable Concrete for Underground Structures)

  • 백상현;박성수;박종유;백원준;엄태선;최롱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.259-262
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, was compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and field test of low permeable concrete using fly ash were performed. From this study, fly ash concrete can control the penetration of water and chloride ion effectively by forming dense micro-structure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

콘크리트 구조물에서 석영, 장석의 알카리-골재반응의 연구 (A Study on the Alkali-Aggregate Reaction of Quartz and Feldspars in Concrete Structure)

  • 하성호;김무한;유신애;정지곤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.164-169
    • /
    • 1995
  • Cracks in the concrete structure are known to develope by various mechani는, including an alkali-aggregate reaction. The alkali-silicate reaction between aggregates and cement is studied using polarized microscope, electron probe microanalyser and electron microscope. Metamorphosed, biaxial quartz and feldspars grains appear to have reacted readily with alkali from cement. For a given mineral, fine-grained minerals tend to react readily over the coarse-grained ones. A chemical analysis shows that the elements K, Na, Ca, and Si migrated, in most cases, fro the portion of h호 concentration to the low, Some clay minerals, including smectite and illite are newly formed as one of the reaction products. The continual expansion and shrinkage of the expandible clay minerals, probably due to repeated absorption and loss of water within the structure, plays an important role in the development of cracks within the concrete structure.

  • PDF

알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究 (A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • 제10권1호
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • 제18권2호
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

폐섬유를 활용한 바탕콘크리트의 균열 및 복합열화 저감에 관한 연구 (A Study on Reduction of Crack and Composite Deterioration of Base Concrete Using Waste Fiber)

  • 추용희;강예진;이동운;김대건
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2021
  • Recently, 67% of defect and tenant lawsuits were identified as leaks due to cracks. In particular, when the final finish of the roof of a building is designed with base concrete, complex deterioration occurs due to the harsh environment such as shrinkage and expansion due to external temperature changes, freezing and thawing, and the use of calcium chloride due to snow accumulation. Therefore, it is intended to secure long-term durability by reducing cracks in the base concrete by using waste fibers, which are industrial by-products.

  • PDF

Modeling the polypropylene fiber effect on compressive strength of self-compacting concrete

  • Nazarpour, Mehdi;Asl, Ali Foroughi
    • Computers and Concrete
    • /
    • 제17권3호
    • /
    • pp.323-336
    • /
    • 2016
  • Although the self-compacting concrete (SCC) offers several practical and economic benefits and quality improvement in concrete constructions, in comparison with conventionally vibrated concretes confronts with autogenously chemical and drying shrinkage which causes the formation of different cracks and creates different problems in concrete structures. Using different fibers in the mix design and implementation of fibrous concrete, the problem can be solved by connecting cracks and micro cracks together and postponing the propagation of them. In this study an experimental investigation using response surface methodology (RSM) based on full factorial design has been undertaken in order to model and evaluate the polypropylene fiber effect on the fibrous self-compacting concrete and curing time, fiber percentage and fiber amount have been considered as input variables. Compressive strength has been measured and calculated as the output response to achieve a mathematical relationship between input variables. To evaluate the proposed model analysis of variance at a confidence level of 95% has been applied and finally optimum compressive strength predicted. After analyzing the data, it was found that the presented mathematical model is in very good agreement with experimental results. The overall results of the experiments confirm the validity of the proposed model and this model can be used to predict the compressive strength of fibrous self-compacting concrete.

초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성 (Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC))

  • 류두열;박정준;김성욱;윤영수
    • 콘크리트학회논문집
    • /
    • 제23권5호
    • /
    • pp.581-590
    • /
    • 2011
  • 초고성능 시멘트 복합체(ultra-high-performance cementitious conposites, UHPCC)는 우수한 압축강도와 연성을 나타내기 때문에 구조 부재 적용 시 단면을 상당히 감소시키고, 낮은 물-결합재비와 고분말 혼화 재료의 사용으로 높은 수축 변형률이 발생하게 되어 거푸집 및 보강근 등의 구속에 의한 수축 균열의 발생 가능성이 크다. 그러므로 이 연구에서는 UHPCC의 수축을 저감시키기 위한 방법으로 팽창재와 수축 저감제를 조합하여 혼입하고 자유수축과 구속 수축 거동을 평가하여 적합성 여부를 산정하였다. 실험 결과 팽창재와 수축 저감제를 조합하여 혼입한 경우에 약 40~44%의 자유수축 저감 효과를 보였으며, 잔류 인장응력은 약 35%와 47% 감소하였다. 지속적인 구속 하중에 의한 인장 크리프의 발생으로 탄성 수축 응력의 약 61%, 64%가 이완되는 것으로 나타났으며, 따라서 구속 수축 거동을 평가할 때에는 반드시 크리프 효과를 고려해야 한다고 판단되었다. 구속도는 0.78~0.85로 나타났으며 팽창재와 수축 저감제의 혼입에 의한 영향은 미미하였고 콘크리트 링의 두께가 클수록 감소하는 경향을 보였다. 또한, UHPCC의 인장 크리프 변형률을 측정하고 재령에 따라 변하는 구속 하중을 적용한 4-매개 변수 크리프 예측 모델과 비교하였다.

전력구 콘크리트 구조물의 건조수축 균열특성에 관한 연구 (Cracking Behavior of Concrete Box Culvert for Power Transmission Due to Drying Shrinkage)

  • 우상균;추인엽;김기중;이윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 2016
  • 이 연구의 목적은 개착식 전력구 콘크리트에 발생하는 부등건조수축에 의한 균열특성을 파악하고, 그 제어방법을 제시하는데 있다. 건조수축균열은 콘크리트 내부의 수분확산계수의 영향을 크게 받으며, 수분확산계수는 콘크리트 내부에서의 수분이동속도를 결정하는 주요인자이다. 수분확산계수와 더불어 콘크리트 표면의 표면계수와 외부의 상대습도는 콘크리트 내부에서 외부로의 수분이동에 영향을 미친다. 따라서 이 연구에서는 전력구 박스형 콘크리트 구조물의 부등건조수축에 의한 균열특성을 파악하기 위하여 세 가지 주요영향인자를 고려한 수치해석을 수행하였다. 수치해석 결과, 수분확산계수와 표면계수가 증가할수록 상부슬래브의 부등건조수축에 의한 균열발생시점이 빨라지며, 세 가지 요인 중에 콘크리트의 부등건조수축에 의한 균열발생 특성에 가장 큰 영향을 미치는 것은 외기습도인 것으로 나타났다. 이 연구결과를 분석한 결과, 개착식 전력구 시공시에 콘크리트 타설 후 표면보습이나 살수양생과 같이 외기습도를 증가시키는 것이 부등건조수축에 의한 균열제어에 가장 효과적인 것으로 판단되며, 콘크리트 재료적 측면의 균열저감방법으로 수분확산계수와 표면계수를 결정하는 콘크리트의 배합이나 재료특성을 적절히 선정함으로써 균열의 진전속도나 발생시점을 제어할 수 있을 것으로 판단된다.