• Title/Summary/Keyword: shotcrete

Search Result 398, Processing Time 0.019 seconds

Assessment of Acid Rock Drainage Production Potential and Damage Reduction Strategy: A Case Study of Tunnel Construction Area (암석의 산성배수 발생개연성 평가 및 피해저감대책: 터널건설예정구간 사례)

  • Kim, Jae-Gon;Lee, Jin-Soo;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.41 no.3
    • /
    • pp.335-344
    • /
    • 2008
  • The acid rock drainage (ARD) production potential of rock was assessed for a tunnel construction area, Kimhae and the damage reduction strategy was discussed based on the ARD risk evaluation. The geology of the studied area consisted of Mesozoic quartz porphyry, sandstone, tuff and granite. Sulfides occurred as a disseminated type in quartz porphyry and granite, and a vein type in sandstone. Quartz porphyry and sandstone with a high content of sulfide were classified as a potentially ARD forming rock. The drainage originated from those rocks may acidify and contaminate the surrounding area during the tunnel construction. Therefore, the drainage should be treated before it is discharged. A slope stability problem due to the ARD was also expected and the coating technology was recommended for the reduction of ARD generation before the application of supplementary work for enhancing slope stability such as shotcrete and anchor. From the ARD risk analysis, those rocks should not be used as aggregate and be used as bank fill material with the system for the minimum contact with rain water and ground-water.

Influences of Grouting Pressure of Microcement to Upper Structures (지반보강용 마이크로시멘트의 주입압이 상부구조물에 미치는 영향)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.70-77
    • /
    • 2010
  • Microcement grouting and micro pile are frequently used for ground modification during tunnel construction. The influence of grouting pressure of microcement grouting and micro pile to the existing bridge which is directly over the constructing tunnel is investigated. Three dimensional seepage flow-structure interactive analysis considering firm water pressure with full stages of construction including the construction of upper bridge, microcement grouting, micro pile and tunnel is performed. The settlement and tilting of the pier of existing bridge violate the design code and the reaction of the bridge are highly increased after grouting. The stress of tunnel bracings such as rockbolt and shotcrete also exceed the limit of the code. The pressure of microcement grouting is confined by bedrock and transmit to the surrounded soil and the upper bridge. Microcement grouting needs mid-high pressure to penetrate through weak fault plane and the pressure greatly influence the safety of the upper structure. It is important to decide and care the grouting pressure to improve weak fault plane directly under the existing structures and the pressure of microcement grouting should be considered in underground analysis.

Characteristics of the Cut Slopes located in Mt. Jang Area, Busan (부산 장산지역에 분포한 절개사면의 특성)

  • Song, Young-Suk;Kim, Kyeong-Su;Cho, Yong-Chan;Lee, Choon-Oh;Chae, Byung-Gon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.65-73
    • /
    • 2013
  • The information of cut slope in Mt. Jang area, Busan is investigated in order to construct the Slope Management System in Urban Area. The slope inspection sheet is made to record the characteristics for cut slopes, and that is capable to be inputted slope information systematically. The cut slopes in Mt. Jang area are consisting of 69 slopes. Most of the cut slopes are constructed in cutting slope and retaining wall (CR). The cut slopes located in housing facilities are 46 slopes, and the slopes located in school facilities are 12 slopes. The traverse of cut slopes is mainly ranged from 50 m to 150 m, and the height is mainly ranged from 10 m to 20 m. The slopes combined with soil and rock are mostly distributed. The retaining wall was installed in the toe part of cut slope in order to increase the slope stability, and the additional reinforcement methods including the anchor, drainage, preventing rock fall, shotcrete and vegetation were installed at the toe part of cut slopes.

Analysis of Water Penetration through Pores in Spray-applied Waterproofing Membrane Using X-ray CT Images (X-ray CT를 이용한 분무식 방수 멤브레인의 공극 내 물 침투 분석)

  • Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho;Lee, Chulho;Choi, Myung-Sik;Kim, Kwang Yeom
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.211-219
    • /
    • 2017
  • The spray-applied waterproofing membrane is installed on shotcrete or concrete surface to make impermeable layer with 3-5 mm thick for the purpose of waterproofing. This study aims to determine the internal structure of a spray-applied waterproofing membrane including pores by using X-ray CT technique. Before obtaining X-ray images of the membrane specimens, a waterproof performance test was performed on the membrane specimens with a water pressure of 500 kPa for 28 days. Results show that the movement of moisture is made through micropores. This is based on the fact that the large pores inside the membrane are not saturated and the degrees of saturation of the micropores are high. X-ray image is effective for determining the pore size distribution and whether the membrane with pores contains the water However, it is necessary to pay attention to the determination of water content, since water content may vary depending on the threshold value of X-ray image analysis applied to calculate the water content.

Analysis of Reinforcement Effect of TSL (Thin Spray-on Liner) as Supports of Tunnel by Numerical Analysis (수치해석에 의한 터널 지보재로서 TSL(Thin Spray-on Liner)의 보강 효과 분석)

  • Lee, Kicheol;Kim, Dongwook;Chang, Soo-Ho;Choi, Soon-Wook;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.151-161
    • /
    • 2017
  • A TSL (Thin Spray-on Liner) has a higher initial strength and faster construction time than conventional cementitious shotcrete. Because of its high adhesion and tensile strength, the TSL reinforced concrete show a characteristic like composite materials. In this study, to consider an application to the conventional design method, ASD (allowable stress design), numerical study was used. In the numerical analysis, material and contact properties were adopt from previous studies. Then a thickness of concrete in the tunnel was evaluated with the TSL reinforced case by the ASD concept. In other words, bending compressive stress, bending tensile stress and shearing force of the concrete were considered to determine a thickness of concrete lining by the given boundary conditions. From the numerical analysis, there was no tendency to show by the ASD because the ASD is based on the elastic theory while the TSL typically contributes to reinforcement after yielding.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

A Study on Stability Evaluation of the Nail-Anchor Mixed Support System

  • Kim, Hong-Taek;Cho, Yong-Kwon;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.41-70
    • /
    • 1999
  • The benefits of utilizing internal reinforced members, such as soil nails and ground anchors, in maintaining stable excavations and slopes have been known among geotechnical engineers to be very effective. Occasionally, however, both soil nails and ground anchors are simultaneously used in one excavation site. In the present study, a method of limit equilibrium stability analysis of the excavation zone reinforced with the vertically or horizontally mixed nail-anchor system is proposed to evaluate the global safety factor with respect to a sliding failure. The postulated failure wedges are determined based on the results of the $FLAC^{2D}\; 및\; FLAC^{3D}$ program analyses. This study also deals with a determination of the required thickness of the shotcrete facing. An excessive facing thickness may be required due to both the stress concentration and the relative displacement at the interface zone between the soil nailing system and the ground anchor system. A simple finite element method of analysis is presented to estimate the corresponding relative displacement at the interface zone between two different support systems. As an efficient resolution to reduce the facing thickness, the modified bearing plate system is also proposed. Finally with various analysis related to the effects of design parameters, the predicted displacements are compared with the results of the $FLAC^{2D}$ program analyses.

  • PDF

Behavior and pillar stability of enlarged existing parallel tunnels (기존 병설터널의 확폭에 따른 터널 거동 및 필라 안정성 분석)

  • Lee, Myeong-Han;Kim, Bumjoo;Jang, Yeon-Soo;Yun, Ji-Nam;Park, Hyun-Gon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.5
    • /
    • pp.537-546
    • /
    • 2013
  • Traffic congestion in existing tunnels has increased due to increased traffic volume and enlarged vehicles. Enlarging existing tunnels has advantages over constructing new tunnels by reducing land purchasing costs as well as minimizing natural environment destruction. In fact, many overseas projects for enlarging existing tunnels have been reported. Thus, it appears that the demand on enlarging existing tunnels continues to rise in Korea in near future. Nonetheless, the studies related to the enlarged tunnels have been relatively rare since there have been few tunnel enlargement projects in Korea. In the present study, the tunnel behavior and the stability of rock pillar when enlarging existing parallel tunnels were investigated by performing FE analysis and using existing theory and empirical relationships. Four different enlarging cases, depending on the enlargement types and directions, were examined in the study. According to the results, for the tunnels with the same pillar width after enlarged, the uni-laterally enlarged tunnel indicated 5 to 20% higher crown settlement compared to the bi-laterally enlarged tunnel, and for the tunnel with the narrowest pillar, the highest shotcrete stress was observed. Also, the strength/stress ratio for rock pillar was more than 1.0 for all four enlargement cases, and the Matsuda's method was found to give higher strength/stress ratio by about 50% compared to the Peck's method.

Application of Strength Reduction Method to Evaluation of Pillar Safety Factor in very Closely Spaced Tunnels (근접병설터널에서 필라부 안전율 평가를 위한 강도감소법의 적용성 연구)

  • Jun, Sung-Kwon;Yoon, Dong-Ho;Song, Jae-Joon;Kim, Se Hyung
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.346-355
    • /
    • 2019
  • When evaluating pillar stability in very closely spaced tunnels, a local safety factor (strength/stress ratio) at the minimum width has been widely used. Tension bolts have been frequently applied as reinforcement for the cases where safety factors are less than 1.0 from FEM stress analysis. However, the local safety factor shows a constant value irrespective of the change in pillar width/tunnel diameter (PW/D) and the safety factor of the pillar is underestimated because the variation of deviation stress is relatively small even when the pre-stressing is applied to the tension bolt. In addition, the average safety factor proposed by Hoek and Brown(1980) was reviewed, but the pillar safety factor was relatively overestimated when the width of the pillar was increased. As an alternative, the SRM safety factor using shear strength reduction method shows the effect of changing the safety factor in the case of no reinforcement and tension bolt reinforcement as the pillar width/tunnel diameter(PW/D) changes. The failure shape is also similar to the previous limit theory result. In this study, the safety factor was evaluated without considering rock bolt and shotcrete to distinguish reinforcing effect of tension bolt.

Evaluation of Radon Exposure During Highway Tunnel Construction by New Austrian Tunneling Method (NATM 공법에 의한 고속도로 터널 공사 중 라돈 노출 평가)

  • Ye-Ji Yu;Hyoung-Ryoul Kim;Mo-Yeol Kang;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.115-125
    • /
    • 2023
  • Objectives: This study was conducted to measure the level of radon in the air at a highway tunnel construction site in a gneiss area using the New Austrian Tunneling Method (NATM) and to evaluate exposure levels by occupation. Methods: Radon concentrations in the air were measured using E-PERM at points 300 m, 600 m, and 900 m from the tunnel entrance during the excavation and waterproofing work inside the tunnel. In addition, radon concentrations were measured during external excavation to compare with the inside of the tunnel. Personal exposure levels for major occupations including tunnel workers, construction equipment operators, waterproofers, shotcrete workers, and safety and health managers who participated in the construction were estimated using radon concentration measured in the work process area and working hours by occupation. Results: As a result of a total of 77 radon measurements, the geometric mean (GM) concentration was 71.1 Bq/m3, and the maximum concentration was 127.3 Bq/m3, which was below the indoor air quality criteria. Radon concentration by process decreased in the order of the tunnel excavation process (GM= Bq/m3, GSD=1.2), waterproofing process (GM=73.35 Bq/m3, GSD=1.2), and outside excavating process (GM=45.28 Bq/m3, GSD=1.2). Processes inside the tunnel were significantly higher than outside excavating processes (p<0.05). There was no statistically significant difference in radon concentration measured inside by distance from the tunnel entrance, but the innermost point of the tunnel, 900 m (GM=79.24 Bq/m3, GSD=1.27), measured the highest. Conclusions: The occupation with the highest individual exposure to radon was tunnel worker (64.16 Bq/m3), followed by construction equipment driver (64.04 Bq/m3) and waterproofer (63.13 Bq/m3).