• Title/Summary/Keyword: shortening

Search Result 1,604, Processing Time 0.037 seconds

Analysis of Differential Shortening of Reinforced Concrete High - Rise Building (철근콘크리트 고층 건물의 부등 수직변위 해석)

  • 신영수;성렬영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.142-147
    • /
    • 1993
  • In the reinforced concrete structure, as the height of building structure increases, the accurate estimation of differential column shortening is important factor in the structural design. In this study, the analysis of column shortening is applied to 36-story building structure to be built in time. As a result, it may found that, as the difference of compressive stress become larger, differential shortening effect due to creep and shrinkage are more signicant factor to structural designer.

  • PDF

Reduction of differential column shortening due to outrigger (아웃리거에 의한 부등기둥축소 감소효과)

  • Shin, Seung-Hak;Kim, Han-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.149-150
    • /
    • 2010
  • In this study, optimal location of outrigger for reduction of differential column shortening has been proposed. Optimal location of outrigger for reduction of differential column shortening is the position that the largest differential column shortening develops when the outrigger is not installed.

  • PDF

유지류의 Shortening 기능

  • 손경희;오혜숙
    • Proceedings of the Korean Society of Food and Cookery Science Conference
    • /
    • 1986.08a
    • /
    • pp.89-94
    • /
    • 1986
  • 1. 밀가루 반죽 내에서 유지류는 gluten의 수화를 감소시키고 따라서 glu1en의 망상 구조형성을 방해함으로써 연화작용을 하게 된다. 이 결과 pastry와 biscuit, cracker 류의 crispness를 증가시키고, shortened cake에 tenderness를 부여한다.2. 유지류의 shortening power는 가소성이 커서 밀가루에 잘 분산될수록, 유지의 사용량이 많을수록, 반죽 정도가 적당할 대, 반죽을 섞는 과정에서 액체 성분 첨가 후의 젓는 정도가 적을수록 커진다. 3. Yeast-raised baked food에서 shortening등 유지류의 역할은 빵의 용적, 탄성 및 기계적 내성을 증가시키고 노화를 지연시키며 질감을 좋게한다. 이러한 shortening의 기능은 밀가루 자체의 지방질과도 밀접한 상관 관계가 있다.

  • PDF

The Optimal Column Grouping Technique for the Compensation of Column Shortening (기둥축소량 보정을 위한 기둥의 최적그루핑기법)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • This study presents the optimal grouping technique of columns which groups together columns of similar shortening trends to improve the efficiency of column shortening compensation. Here, Kohonen's self-organizing feature map which can classify patterns of input data by itself with unsupervised learning was used as the optimal grouping algorithm. The Kohonen network applied in this study is composed of two input neurons and variable output neurons, here the number of output neuron is equal to the column groups to be classified. In input neurons the normalized mean and standard deviation of shortening of each columns are inputted and in the output neurons the classified column groups are presented. The applicability of the proposed algorithm was evaluated by applying it to the two buildings where column shortening analyses had already been performed. The proposed algorithm was able to classify columns with similar shortening trends as one group, and from this we were able to ascertain the field-applicability of the proposed algorithm as the optimal grouping of column shortening.

Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems (120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. The differential axial shortening can cause challenges in the serviceability and safety of non-structural and structural elements, respectively. Hence, in this study, the differential axial shortening of the vertical elements and effects of long term behaviors of concrete are analyzed in 120-story high-rise buildings via the construction sequence analysis. Consequently, the axial shortening of the vertical elements is classified into elastic, creep, and shrinkage shortening, and dominant factors to the maximum axial shortening are analyzed. In addition, the serviceability of the non -structural elements is checked with a differential axial shortening at 30 years after completion of construction, and member forces at design and construction stages in girders and outrigger walls are compared.

The Effects of Differential Axial Shortening on RC High-rise Buildings with Outrigger or Mega Structure Systems (아웃리거구조시스템과 메가구조시스템 적용에 따른 철근콘크리트 초고층 건물에 대한 부등축소의 영향)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. Recently, an outrigger or a mega structure system has been adopted to control the lateral displacement. Furthermore, to resolve the problems caused by differential axial shortening in high-rise buildings, analytical prediction and correction is often studied; however, the study on the comparisons of the lateral load resisting systems to address differential axial shortening is less. Therefore, in this paper, a 60-story RC residential building using an outrigger or a mega structure system is analyzed with a construction sequence. Moreover, differential axial shortening can result in an additional member force of structural members and failure of non-structural members. These problems caused by differential axial shortening affects the behaviors and can damage the important structure member in the high-rise buildings. Hence, the effects of the systems on differential axial shortening between the vertical elements in high-rise buildings are studied.

Column Shortening Analysis of Composite Columns by Age-adjusted Effective Modulus Method (재령보정유효탄성계수법에 의한 합성기둥 축소량 해석)

  • Kim Han-Soo;Kim Jae-Keun;Kim Do-Kyoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.490-495
    • /
    • 2006
  • The analysis method proposed by PCA is widely used in calculating the column shortening of reinforced and composite columns of a tall building. However, residual creep factor which relates creep strain of reinforced concrete to creep strain of plain concrete is based on Rate of Creep Method (RCM) which has theoretical defects and is considered obsolete. In this paper, a new equation for the residual creep factor based on Age-adjusted Effective Modulus Method (AEMM) which is considered exact and better than RCM is proposed. The residual creep factor by RCM is found to be higher than one by AEMM, which means current PCA method overestimates the shortening of a reinforced concrete column. By using the residual creep factor by AEMM, more exact column shortening of a tall building can be obtainable with a simple modification to PCA method.

  • PDF

A Study on The Compensation Method of Vertical Members for High-rise building (초고층 건축물의 수직부재 보정 방법에 관한 연구)

  • Lee, Jea-Ok;Sho, Kwang-Ho;Yoo, In-Keun;Yang, Keek-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.33-36
    • /
    • 2003
  • Time-dependent axial shortening in the cores and columns of tall concrete buildings requires special attention to ensure proper behavior for strength of the structure and the nonstructural clement. The effects of column shortening, both elastic and inelastic, take on added significance and need special consideration in design and construction with increased height of structures. In this paper, the compensation method of column shortening are introduced. It could be conclued that the survey is a significant factor for the compensation of column shortening.

  • PDF

A Three Way Contribution of Wheat Flour Lipids, Shortening and Surfactants to Bread-making (제빵과정에 있어서 밀가루 지방질, 쇼트닝 및 유화제의 역할)

  • Chung, Ok-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.74-89
    • /
    • 1981
  • Breadmaking is a complex system in which many variables govern the production of acceptable bread. Lipids, a minor component of wheat flour, function importantly in bread-making. Shortening, or fat, is one of the essential ingredients in commercial baking. Beneficial shortening effect depends on type and quantity of lipids present in wheat flour and also on wheat flour quality. Surfactants have been used in baking industry during last decade because certrain surfactants can replace shortening and/or natural flour lipids. A proper combination of lipidshortening-surfactant is more useful in the production of specialty breads such as whole wheat breads, high protein breads, high fiber breads or even non-wheat composite breads rather than in the production of regular white breads. This presentation is a review of recent studies on the contribution of flour lipids, shortening, and surfactants, alone or in combination in the production of breads; illustrations are mainly from data obtained in the author's laboratory.

  • PDF

A Study on The Compensation Method of Vertical Members for High-rise building (초고층 건축물의 수직부재 보정 방법에 관한 연구)

  • 이재옥;소광호;유인근;양극영
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.33-36
    • /
    • 2003
  • Time-dependent axial shortening in the cores and columns of tall concrete buildings requires special attention to ensure proper behavior for strength of the structure and the nonstructural element. The effects of column shortening, both elastic and inelastic, take on added significance and need special consideration in design and construction with increased height of structures. In this paper, the compensation method of column shortening are introduced. It could be concluded that the survey is a significant factor for the compensation of column shortening.

  • PDF