DOI QR코드

DOI QR Code

The Effects of Differential Axial Shortening on RC High-rise Buildings with Outrigger or Mega Structure Systems

아웃리거구조시스템과 메가구조시스템 적용에 따른 철근콘크리트 초고층 건물에 대한 부등축소의 영향

  • Kim, Gyeong-Chan (Department of Architectural Engineering, Kwangwoon University) ;
  • Kim, Jae-Yo (Department of Architectural Engineering, Kwangwoon University)
  • 김경찬 (광운대학교 건축공학과) ;
  • 김재요 (광운대학교 건축공학과)
  • Received : 2021.11.11
  • Accepted : 2021.11.29
  • Published : 2022.02.28

Abstract

It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. Recently, an outrigger or a mega structure system has been adopted to control the lateral displacement. Furthermore, to resolve the problems caused by differential axial shortening in high-rise buildings, analytical prediction and correction is often studied; however, the study on the comparisons of the lateral load resisting systems to address differential axial shortening is less. Therefore, in this paper, a 60-story RC residential building using an outrigger or a mega structure system is analyzed with a construction sequence. Moreover, differential axial shortening can result in an additional member force of structural members and failure of non-structural members. These problems caused by differential axial shortening affects the behaviors and can damage the important structure member in the high-rise buildings. Hence, the effects of the systems on differential axial shortening between the vertical elements in high-rise buildings are studied.

초고층 건물에서 수평변위 제어와 수직부재에서 발생하는 부등축소에 대한 검토가 필수적이다. 수평변위 제어를 위해 근래에 아웃리거 구조시스템과 메가 구조시스템을 횡력저항시스템으로 사용한 초고층 건물이 증가하고 있다. 또한, 부등축소로 인한 구조적 문제를 해결하기 위해 부등축소량 예측과 예측결과를 통한 시공단계에서의 보정방법이 연구되어 왔으나 부등축소에 대한 횡력저항시스템의 영향 비교는 드문 편이다. 따라서, 본 논문에서는 수평변위 제어를 위해 아웃리거 구조시스템과 메가 구조시스템을 사용한 60층 규모의 철근콘크리트 주거용 초고층 건물에 대해 시공단계해석을 통한 부등축소를 비교하고 그 영향을 분석하고자 한다. 또한, 부등축소는 비구조요소의 파손 및 구조요소에 부가하중을 유발하기도 하며 부등축소가 야기한 문제는 초고층 건물에서 중요한 부재를 손상시킬 수 있으므로 각 횡력저항시스템별로 수직부재의 부등축소에 대한 영향을 분석하였다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(NRF-2019R1A2C1011667)을 받아 수행되었습니다.

References

  1. Chen, Y., Cai, K., Wang, X. (2018) Parameter Study of Framed-Tube Structures with Outriggers using Genetic Algorithm, Struct. Design Tall Spec. Build., 27:e1499. https://doi.org/10.1002/tal.1499
  2. Choi, S.W. (2010) A Study on the Displacement of Finishing Materials according to Column Shortening of High-rise Residential Apartment Buildings, M.S. Thesis, Hanyang University, p.69.
  3. Chung, K.R., Yoo, S.H. (2019) Structural Design and Construction of Mega Braced Frame system for Tall Buildings, Int. J. High-Rise Build., 8(3), pp.169~175. https://doi.org/10.21022/IJHRB.2019.8.3.169
  4. Hulea, R., Parv, B., Nicoreac, M., Petrina, B. (2014) Optimum Design of Outrigger and Belt Truss Systems using Genetic Algorithm, J. Civil Eng, Archit., 8(6), pp.709~715.
  5. Kim, H.K. (2020) Modified Proposal for Optimal Location of Offset Outrigger System in High-rise Building, J. Korea Inst. Struct. Maint. & Insp., 24(5), pp.37~44. https://doi.org/10.11112/JKSMI.2020.24.5.37
  6. Kim, H.S., Shin, S.H. (2010) Effects of Differential Column Shortening on Internal Member Forces of Tall Buildings, J. Archit. Inst. Korea (Structure), 26(5), pp.35~42.
  7. Kim, H.S., Shin, S.H. (2011) Reduction of Differential Columns Shortening due to Outrigger, J. Archit. Inst. Korea (Structure), 27(9), pp.29~36.
  8. Lu, J ., Wu, J ., Luo, X., Zhang, Q. (2013) Time-dependent Analysis of Steel-reinforced Concrete Structures, Struct. Design Tall Spec. Build., 22. pp.1186~1198. https://doi.org/10.1002/tal.1079
  9. Ministry of Land, Infrastructure and Transport, MOLIT (2019a) Architectural Structure Design Standard (KDS 41 00 00).
  10. Ministry of Land, Infrastructure and Transport, MOLIT (2019b) Architectural Structure Design Standard : Design Load (KDS 41 10 15).
  11. Ministry of Land, Infrastructure and Transport, MOLIT (2019c) Seismic Design Standard for Buildings (KDS 41 17 00).
  12. Ministry of Land, Infrastructure and Transport, MOLIT (2021) Concrete Structure Design Standard (KDS 14 20 00).
  13. Mun, I.W., Choi, K.B. (2018) The Influence Factors on the Compensation of Column Shortening in Tall Buildings, J. Korea Inst. Struct. Maint. & Insp., 22(1), pp.208~215. https://doi.org/10.11112/JKSMI.2018.22.1.208
  14. Samarakkody, D.I., Thanbitatman, D.P., Chan, T.H.T., Moragaspitiya, P.H.N. (2017) Differential Axial Shortening and its Effects in High-Rise Buildings with Composite Concrete Filled Tube Columns, Const. Building. Mater., 143, pp.659~672. https://doi.org/10.1016/j.conbuildmat.2016.11.091
  15. Song, E.S., Kim, J.Y. (2019) Analytical Correction Method Based on a Comparison of the Column Shortening Measurement-Prediction in Tall Buildings, J. Comput. Struct. Eng. Inst. Korea, 32(6), pp.391~400. https://doi.org/10.7734/COSEIK.2019.32.6.391
  16. Taranath, B.S. (1988) Structural Analysis and Design of Tall Buildings, McGraw-Hill Book Company, Singapore.
  17. Youn, W.S., Lee, D.H., Cho, C.H., Kim, E.S., Lee, D.C., Kim, J.H. (2012) Seismic Performance Evaluation of Complex-Shaped Tall Buildings by Lateral Resisting Systems, J. Comput. Struct. Eng. Inst. Korea, 25(6), pp.513~523. https://doi.org/10.7734/COSEIK.2012.25.6.513