• Title/Summary/Keyword: short-term prediction

Search Result 616, Processing Time 0.024 seconds

Relative Contribution from Short-term to Long-term Flaring rate to Predicting Major Flares

  • Lim, Daye;Moon, Yong-Jae;Park, Eunsu;Park, Jongyeob;Lee, Kangjin;Lee, Jin-Yi;Jang, Soojeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.3-52.3
    • /
    • 2019
  • We investigate a relative contribution from short to long-term flaring rate to predicting M and X-class flare probabilities. In this study, we consider magnetic parameters summarizing distribution and non-potentiality by Solar Dynamics Observatory/Helioseimic and Magnetic Imager and flare list by Geostationary Operational Environmental Satellites. A short-term rate is the number of major flares that occurred in an given active region (AR) within one day before the prediction time. A mid-term rate is a mean flaring rate from the AR appearance day to one day before the prediction time. A long-term rate is a rate determined from a relationship between magnetic parameter values of ARs and their flaring rates from 2010 May to 2015 April. In our model, the predicted rate is given by the combination of weighted three rates satisfying that their sum of the weights is 1. We calculate Brier skill scores (BSSs) for investigating weights of three terms giving the best prediction performance using ARs from 2015 April to 2018 April. The BSS (0.22) of the model with only long-term is higher than that with only short-term or mid-term. When short or mid-term are considered additionally, the BSSs are improved. Our model has the best performance (BSS = 0.29) when all three terms are considered, and their relative contribution from short to long-term rate are 19%, 23%, and 58%, respectively. This model seems to be more effective when predicting active solar ARs having several major flares.

  • PDF

The Prediction of Long-Term Creep Behavior of Recycled PET Polymer Concrete (PET 재활용 폴리머 콘크리트의 장기 크리프 거동 예측)

  • 조병완;태기호;박종화;박성규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.445-448
    • /
    • 2003
  • Polymer concrete using wastes PET recycled resin that is, in general, more excellent mechanical properties than portland cement concrete. A lot of works are carried out about short-term properties of polymer concrete, however, little work has done to define their long-term properties, that is, sustain load such as creep. In this study will show the data that can long-term behavior of polymer concrete by short term creep test of polymer concrete that was affect to the temperature and the time to predict to long-term creep behavior. Then prediction equation was similar tendency that was comparing to short-term creep test and long-term creep test.

  • PDF

Use of the Moving Average of the Current Weather Data for the Solar Power Generation Amount Prediction (현재 기상 정보의 이동 평균을 사용한 태양광 발전량 예측)

  • Lee, Hyunjin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1530-1537
    • /
    • 2016
  • Recently, solar power generation shows the significant growth in the renewable energy field. Using the short-term prediction, it is possible to control the electric power demand and the power generation plan of the auxiliary device. However, a short-term prediction can be used when you know the weather forecast. If it is not possible to use the weather forecast information because of disconnection of network at the island and the mountains or for security reasons, the accuracy of prediction is not good. Therefore, in this paper, we proposed a system capable of short-term prediction of solar power generation amount by using only the weather information that has been collected by oneself. We used temperature, humidity and insolation as weather information. We have applied a moving average to each information because they had a characteristic of time series. It was composed of min, max and average of each information, differences of mutual information and gradient of it. An artificial neural network, SVM and RBF Network model was used for the prediction algorithm and they were combined by Ensemble method. The results of this suggest that using a moving average during pre-processing and ensemble prediction models will maximize prediction accuracy.

Prediction of Baltic Dry Index by Applications of Long Short-Term Memory (Long Short-Term Memory를 활용한 건화물운임지수 예측)

  • HAN, Minsoo;YU, Song-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.497-508
    • /
    • 2019
  • Purpose: The purpose of this study is to overcome limitations of conventional studies that to predict Baltic Dry Index (BDI). The study proposed applications of Artificial Neural Network (ANN) named Long Short-Term Memory (LSTM) to predict BDI. Methods: The BDI time-series prediction was carried out through eight variables related to the dry bulk market. The prediction was conducted in two steps. First, identifying the goodness of fitness for the BDI time-series of specific ANN models and determining the network structures to be used in the next step. While using ANN's generalization capability, the structures determined in the previous steps were used in the empirical prediction step, and the sliding-window method was applied to make a daily (one-day ahead) prediction. Results: At the empirical prediction step, it was possible to predict variable y(BDI time series) at point of time t by 8 variables (related to the dry bulk market) of x at point of time (t-1). LSTM, known to be good at learning over a long period of time, showed the best performance with higher predictive accuracy compared to Multi-Layer Perceptron (MLP) and Recurrent Neural Network (RNN). Conclusion: Applying this study to real business would require long-term predictions by applying more detailed forecasting techniques. I hope that the research can provide a point of reference in the dry bulk market, and furthermore in the decision-making and investment in the future of the shipping business as a whole.

A Study on Forecast of Oyster Production using Time Series Models (시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구)

  • Nam, Jong-Oh;Noh, Seung-Guk
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.185-195
    • /
    • 2012
  • This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.

Short-Term Prediction Model of Postal Parcel Traffic based on Self-Similarity (자기 유사성 기반 소포우편 단기 물동량 예측모형 연구)

  • Kim, Eunhye;Jung, Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.76-83
    • /
    • 2020
  • Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.

Prediction Oil and Gas Throughput Using Deep Learning

  • Sangseop Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.155-161
    • /
    • 2023
  • 97.5% of our country's exports and 87.2% of imports are transported by sea, making ports an important component of the Korean economy. To efficiently operate these ports, it is necessary to improve the short-term prediction of port water volume through scientific research methods. Previous research has mainly focused on long-term prediction for large-scale infrastructure investment and has largely concentrated on container port water volume. In this study, short-term predictions for petroleum and liquefied gas cargo water volume were performed for Ulsan Port, one of the representative petroleum ports in Korea, and the prediction performance was confirmed using the deep learning model LSTM (Long Short Term Memory). The results of this study are expected to provide evidence for improving the efficiency of port operations by increasing the accuracy of demand predictions for petroleum and liquefied gas cargo water volume. Additionally, the possibility of using LSTM for predicting not only container port water volume but also petroleum and liquefied gas cargo water volume was confirmed, and it is expected to be applicable to future generalized studies through further research.

Long Term Prediction of Korean-U.S. Exchange Rate with LS-SVM Models

  • Hwang, Chang-Ha;Park, Hye-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.845-852
    • /
    • 2003
  • Forecasting exchange rate movements is a challenging task since exchange rates impact world economy and determine value of international investments. In particular, Korean-U.S. exchange rate behavior is very important because of strong Korean and U.S. trading relationship. Neural networks models have been used for short-term prediction of exchange rate movements. Least squares support vector machine (LS-SVM) is used widely in real-world regression tasks. This paper describes the use of LS-SVM for short-term and long-term prediction of Korean-U.S. exchange rate.

  • PDF

Short-Term Photovoltaic Power Generation Forecasting Based on Environmental Factors and GA-SVM

  • Wang, Jidong;Ran, Ran;Song, Zhilin;Sun, Jiawen
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • Considering the volatility, intermittent and random of photovoltaic (PV) generation systems, accurate forecasting of PV power output is important for the grid scheduling and energy management. In order to improve the accuracy of short-term power forecasting of PV systems, this paper proposes a prediction model based on environmental factors and support vector machine optimized by genetic algorithm (GA-SVM). In order to improve the prediction accuracy of this model, weather conditions are divided into three types, and the gray correlation coefficient algorithm is used to find out a similar day of the predicted day. To avoid parameters optimization into local optima, this paper uses genetic algorithm to optimize SVM parameters. Example verification shows that the prediction accuracy in three types of weather will remain at between 10% -15% and the short-term PV power forecasting model proposed is effective and promising.

Prediction of Short and Long-term PV Power Generation in Specific Regions using Actual Converter Output Data (실제 컨버터 출력 데이터를 이용한 특정 지역 태양광 장단기 발전 예측)

  • Ha, Eun-gyu;Kim, Tae-oh;Kim, Chang-bok
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.561-569
    • /
    • 2019
  • Solar photovoltaic can provide electrical energy with only radiation, and its use is expanding rapidly as a new energy source. This study predicts the short and long-term PV power generation using actual converter output data of photovoltaic system. The prediction algorithm uses multiple linear regression, support vector machine (SVM), and deep learning such as deep neural network (DNN) and long short-term memory (LSTM). In addition, three models are used according to the input and output structure of the weather element. Long-term forecasts are made monthly, seasonally and annually, and short-term forecasts are made for 7 days. As a result, the deep learning network is better in prediction accuracy than multiple linear regression and SVM. In addition, LSTM, which is a better model for time series prediction than DNN, is somewhat superior in terms of prediction accuracy. The experiment results according to the input and output structure appear Model 2 has less error than Model 1, and Model 3 has less error than Model 2.