• 제목/요약/키워드: short-chain-length PHA precursors

검색결과 2건 처리시간 0.016초

Identification and Analysis of Putative Polyhydroxyalkanoate Synthase (PhaC) in Pseudomonas fluorescens

  • Lim, Ju Hyoung;Rhie, Ho-Gun;Kim, Jeong Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1133-1140
    • /
    • 2018
  • Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. The PHA granules consisted mainly of a poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment that hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas. In vivo expression of the putative PHA synthase gene ($phaC_{Pf}$) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli (${phaC_{Pf}}^+$, pUMS) grown in medium containing glucose accumulated PHA granules consisting mainly of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from an E. coli fadR mutant (${phaC_{Pf}}^+$) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified $PhaC_{Pf}$, suggesting that the putative PHA synthase of P. fluorescens utilizes mainly short-chain-length PHA precursors as a substrate.

Short-Chain-Length Polyhydroxyalkanoates: Synthesis in Metabolically Engineered Escherichia coli and Medical Applications

  • PARK, SI-JAE;CHOI, JONG-IL;LEE, SANG-YUP
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.206-215
    • /
    • 2005
  • Polyhydroxyalkanoates (PHAs) are homo or hetero polyesters of (R)-hydroxyalkanoates accumulated in various microorganisms under growth-limiting condition in the presence of excess carbon source. They have been suggested as biodegradable substitutes for chemically synthesized polymers. Recombinant Escherichia coli is one of the promising host strains for the economical production of PHAs, and has been extensively investigated for the process development. The heterologous PHA biosynthetic pathways have been established through the metabolic engineering and inherent metabolic pathways of E. coli have been redirected to supply PHA precursors. Fermentation strategies for cultivating these recombinant E. coli strains have also been developed for the efficient production of PHAs. Nowadays, short-chain-length (SCL) PHAs are being re-invited due to its improved mechanical properties and possible applications in the biomedical area. In this article, recent advances in the development of metabolically engineered E. coli strains for the enhanced production of SCL-PHAs are reviewed. Also, medical applications of SCL-PHAs are discussed.