• Title/Summary/Keyword: short fiber content

Search Result 78, Processing Time 0.023 seconds

Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites (단섬유 강화 에폭시 복합재료의 열적/기계적 특성)

  • Huang, Guang-Chun;Lee, Chung-Hee;Lee, Jong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.530-536
    • /
    • 2009
  • A cycloaliphatic epoxy/acidic anhydride system incorporating short carbon fibers (SCF) and short glass fibers (SGF) was fabricated and thermal/mechanical properties were characterized. At low filler content both SCF- and SGF-reinforced composites showed a similar decrease in coefficient of thermal expansion (CTE), measured by a thermomechanical analyzer, with increasing loadings, above which SCF became more effective than SGF at reducing the CTE. Experimental CTE data for the SCF-reinforced composites is best described by the rule of mixtures at lower SCF contents and by the Craft-Christensen model at higher SCF contents. Storage modulus (E') at $30^{\circ}C$ and $180^{\circ}C$ was greatly enhanced for short fiber-filled composites compared to unfilled specimens, Scanning electron microscopy of the fracture surfaces indicated that the decreased CTE and the increased E' of the short fiber-reinforced composites resulted from good interfacial adhesion between the fibers and epoxy matrix.

Fiber source and inclusion level affects characteristics of excreta from growing pigs

  • Mpendulo, Conference Thando;Chimonyo, Michael;Ndou, Saymore Petros;Bakare, Archibold Garikayi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.755-762
    • /
    • 2018
  • Objective: The objective of the study was to determine the influence of varying fibrous diets on fecal characteristics of growing pigs. Methods: A total of 104 pigs (initial weight $18{\pm}2.0kg$) were used in the study. They were housed in individual pens and fed on diets containing maize cob, grass hay, lucerne hay, maize stover, and sunflower husk. These fibers were included at 0, 80, 160, 240, 320 and 400 g/kg. Fecal and urine samples were collected. Results: Fecal output was largest amongst pigs fed on diets containing grass hay and maize stover (p<0.05). Nitrogen content was highest in feces from pigs fed on sunflower husk (p<0.05). Pigs fed on diets containing maize stover and maize cobs produced the largest concentrations of short chain fatty acids. Acetate concentration was high in feces of pigs fed maize stover than those fed grass hay and lucerne hay (p<0.05). As the level of fiber inclusion increased, fecal consistency and nitrogen content increased linearly (p<0.05). Urea nitrogen decreased as the inclusion level increased across all the fibers (p<0.05), with maize cobs containing the largest content of urea nitrogen. As dietary fiber content increased, fecal nitrogen content also increased (p<0.05). Conclusion: It was concluded that different fiber sources influence fecal characteristics, thereby having different implications on pig waste management. It is vital to monitor fiber inclusion thresholds so as to easily manage environmental pollutants such as butyrate that contribute to odors.

Influence of steel-fiber type and content on electrical resistivity of old-concrete

  • Uygunoglu, Tayfun;Topcu, Ilker Bekir;Simsek, Baris
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Electrical resistivity is a property associated with both the physical and chemical characteristics of concrete. It allows the evaluation of the greater or lesser difficulty with which aggressive substances penetrate the concrete's core before the dissolution of the passive film process and the consequent reinforcement's corrosion begin. This work addresses the steel fiber addition to concrete with two types and various contents from 0% to 1.3%, correlating it with its electrical resistivity. To that effect, 9 different mixes of steel fiber reinforced concrete (SFRC) were produced. The electrical resistivity was evaluated on the on six years aged SFRC by direct measurement at different frequency from 0.1 kHz to 100 kHz. The results indicate that steel fiber content is strongly conditioned by the type and quantity of the additions used. It was also found that long type of fibers has more effect on decreasing the electrical resistivity of concrete than short fibers. Therefore, they increase the corrosion risk of concrete depending on fiber volume fraction and moisture percentage.

A study on the unconfined compressive strength(UCS) of fiber-reinforced soil (섬유보강 혼합토의 일축압축강도 특성에 관한 연구)

  • 장병욱;김강석;박영곤
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.461-466
    • /
    • 1998
  • The purpose of this study was to evaluate the properties of unconfined compressive strength(UCS) of dry soil which was reinforced with short polypropylene fiber(SPPF). And the results were summarized as follows: 1. As water content was increased, unconfined compressive strength and strain of dry soil with no fiber added were decreased 2. As mixing ratio of fiber was increased, unconfined compressive strength and strain at failure of dry soil reinforced with SPPF were increased. 3. When mixing ratio was larger than 0.5%, unconfined compressive strength was gradually increased. 4. The longer fiber was, the larger post peak strength was obtained and the larger strain was reached.

  • PDF

Relationship Between Exothermic Heat and Carbon Contents of Pitch-based Carbon Fiber

  • Lee, Jae-Young;Oh, Jong-Hyun;Yang, Xiao Ping;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.202-207
    • /
    • 2009
  • Pitch-based carbon fiber tows were prepared from naphtha cracking bottom oil by reforming and carbonization. The relationship between exothermic heat and carbon contents of the fiber was investigated by changing the carbonization conditions. The carbon contents and the crystallinities of isotropic pitch-based carbon fibers were 86.8~93.8 wt% and 33.7~40.1%, respectively, which were linearly proportional to the increase of carbonization temperature from 700 to $1000^{\circ}C$. The exothermic heat (temperature increase) of fiber tows was measured in a short time, which was also linearly proportional to the increase of carbon contents due to the increase of crystallinity, even though the crystallinity was low. Therefore, the carbon contents or carbonization degree of fibers can rapidly and indirectly be estimated by measuring the surface temperature increase of fibers.

A Study on Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (단섬유 강화 Chloroprene 고무의 동적특성 연구)

  • 이동주;류상렬
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The dynamic properties of short-fiber reinforced chloroprene rubber with different interphase conditions and fiber contents have been studied as functions of frequency, amplitude and temperature. The loss factor(LF) slightly increased more than 1.33% of strain and the dynamic ratio(DR) rapidly decreased with increasing strain amplitude. The LF rapidly decreased with increasing frequency especially more than 50Hz. The DR showed the lower when it compared to virgin material with increasing frequency. The LF showed the maximum at $65^{\circ}$ and rapidly decreased after that temperature. The DR showed the lower when it compared with virgin rubber with increasing temperature. Generally, the better interphase condition showed the lower LF and DR at the same testing condition. Therefore, the short-fiber reinforced rubber could have the better isolation when the frequency ratio is more than $\sqrt{2}$ compared with frequency ratio less than $\sqrt{2}$.

Proximate Content Monitoring of Black Soldier Fly Larval (Hermetia illucens) Dry Matter for Feed Material using Short-Wave Infrared Hyperspectral Imaging

  • Juntae Kim;Hary Kurniawan;Mohammad Akbar Faqeerzada;Geonwoo Kim;Hoonsoo Lee;Moon Sung Kim;Insuck Baek;Byoung-Kwan Cho
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1150-1169
    • /
    • 2023
  • Edible insects are gaining popularity as a potential future food source because of their high protein content and efficient use of space. Black soldier fly larvae (BSFL) are noteworthy because they can be used as feed for various animals including reptiles, dogs, fish, chickens, and pigs. However, if the edible insect industry is to advance, we should use automation to reduce labor and increase production. Consequently, there is a growing demand for sensing technologies that can automate the evaluation of insect quality. This study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate composition of dried BSFL, including moisture, crude protein, crude fat, crude fiber, and crude ash content. The larvae were dried at various temperatures and times, and images were captured using an SWIR camera. A partial least-squares regression (PLSR) model was developed to predict the proximate content. The SWIR-based hyperspectral camera accurately predicted the proximate composition of BSFL from the best preprocessing model; moisture, crude protein, crude fat, crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 0.89 or more, and root mean square error of prediction values were within 2%. Among preprocessing methods, mean normalization and max normalization methods were effective in proximate prediction models. Therefore, SWIR-based hyperspectral cameras can be used to create automated quality management systems for BSFL.

Mechanical properties of ABS resin reinforced with recycled CFRP

  • Ogi, Keiji;Nishikawa, Takashi;Okano, Yasutaka;Taketa, Ichiro
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.181-194
    • /
    • 2007
  • This paper presents the mechanical properties of a composite consisting of acrylonitrile-butadiene-styrene (ABS) resin mixed with carbon fiber reinforced plastics (CFRP) pieces (CFRP/ABS). CFRP pieces made by crushing CFRP wastes were utilized in this material. Nine kinds of CFRP/ABS compounds with different weight fraction and size of CFRP pieces were prepared. Firstly, tensile and flexural tests were performed for the specimens with various CFRP content. Next, fracture surfaces of the specimens were microscopically observed to investigate fracture behavior and fiber/resin interface. Finally, the tensile modulus and strength were discussed based on the macromechanical model. It is found that the elastic modulus increases linearly with increasing CFRP content while the strength changes nonlinearly. Microscopic observation revealed that most carbon fibers are separated individually and dispersed homogeneously in ABS resin. Epoxy resin particles originally from CFRP are dispersed in ABS resin and seem to be in good contact with surrounding resin. The modulus and strength can be expressed using a macromechanical model taking account of fiber orientation, length and interfacial bonding in short fiber composites.

Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler

  • Mironov, V.S.;Kim, Seong Yun;Park, Min
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.