• Title/Summary/Keyword: short columns

Search Result 192, Processing Time 0.022 seconds

Confined concrete model of circular, elliptical and octagonal CFST short columns

  • Patel, Vipulkumar I.;Uy, Brian;Prajwal, K.A.;Aslani, Farhad
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.497-520
    • /
    • 2016
  • The confined concrete stress-strain curves utilised in computational models of concrete-filled steel tubular (CFST) columns can have a significant influence on the accuracy of the predicted behaviour. A generic model is proposed for predicting the stress-strain behaviour of confined concrete in short circular, elliptical and octagonal CFST columns subjected to axial compression. The finite element (FE) analysis is carried out to simulate the concrete confining pressure in short circular, elliptical and octagonal CFST columns. The concrete confining pressure relies on the geometric and material parameters of CFST columns. The post-peak behaviour of the concrete stress-strain curve is determined using independent existing experimental results. The strength reduction factor is derived for predicting the descending part of the confined concrete behaviour. The fibre element model is developed for the analysis of circular, elliptical and octagonal CFST short columns under axial loading. The FE model and fibre element model accounting for the proposed concrete confined model is verified by comparing the computed results with experimental results. The ultimate axial strengths and complete axial load-strain curves obtained from the FE model and fibre element model agree reasonably well with experimental results. Parametric studies have been carried out to examine the effects of important parameters on the compressive behaviour of short circular, elliptical and octagonal CFST columns. The design model proposed by Liang and Fragomeni (2009) for short circular, elliptical and octagonal CFST columns is validated by comparing the predicted results with experimental results.

Axial Compressive Behavior of the R/C Short Columns Strengthened with CFS (탄소섬유쉬트로 횡보강된 R/C단주의 압축거동)

  • Shin, Sung-Woo;Bahn, Byong-Youl;Lee, Kwang-Soo;Ahn, Jong-Moon;Hwang, Jun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.201-208
    • /
    • 1998
  • To observe the confinement effects of Carbon Fiber Sheet(CFS) on the high-strength R/C short columns, Fifteen specimens with CFS were manufactured and tested under uni-axial compressive load. Major variables of this study are amount, spacing, type of CFS and amount of transverse steel. Increasing the amount of transverse steel and CFS, compressive strength and axial rigidity is improved. R/C columns with transverse steel and CFS exhibited less axial stress than columns with only CFS. From the test results, it is shown that the area confined with transverse steel and CFS is considerably important to evaluate axial stress of R/C short columns.

  • PDF

Eccentrically compressive behaviour of RC square short columns reinforced with a new composite method

  • Zhang, Fan;Lu, Yiyan;Li, Shan;Zhang, Wenlong
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.95-108
    • /
    • 2018
  • A new composite reinforced method, namely self-compacting concrete filled circular CFRP-steel jacketing, was proposed in this paper. Experimental tests on eight RC square short columns reinforced with the new composite reinforced method and four RC square short columns reinforced with CFS jackets were conducted to investigate their eccentrically compressive behaviour. Nine reinforced columns were subjected to eccentrically compressive loading, while three reinforced columns were subjected to axial compressive loading as reference. The parameters investigated herein were the eccentricity of the compressive loading and the layer of CFRP. Subsequently, the failure mode, ultimate load, deformation and strain of these reinforced columns were discussed. Their failure modes included the excessive bending deformation, serious buckling of steel jackets, crush of concrete and fracture of CFRP. Moreover, these reinforced columns exhibited a ductile failure globally. Both the eccentricity of the compressive loading and the layer of CFRP had a significant effect on the eccentrically compressive behaviour of reinforced columns. Finally, formulae for the evaluation of the ultimate load of reinforced columns were proposed. The theoretical formulae based on the ultimate equilibrium theory provided an effective, acceptable and safe method for designers to calculate the ultimate load of reinforced columns under eccentrically compressive loading.

Numerical analysis of the seismic performance of RHC-PVCT short columns

  • Xue, Jianyang;Zhao, Xiangbi;Ke, Xiaojun;Zhang, Fengliang;Ma, Linlin
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.257-267
    • /
    • 2019
  • This paper presents the results of cyclic loading tests on new high-strength concrete (HC) short columns. The seismic performance and deformation capacity of three reinforced high-strength concrete filled Polyvinyl Chloride tube (RHC-PVCT) short columns and one reinforced high-strength concrete (RHC), under pseudo-static tests (PSTs) with vertical axial force was evaluated. The main design parameters of the columns in the tests were the axial compression ratio, confinement type, concrete strength, height-diameter ratio of PVCT. The failure modes, hysteretic curves, skeleton curves of short columns were presented and analyzed. Placing PVCT in the RHC column could be remarkably improved the ultimate strength and energy dissipation of columns. However, no fiber element models have been formulated for computing the seismic responses of RHC-PVCT columns with PVT tubes filled with high-strength concrete. Nonlinear finite element method (FEM) was conducted to predict seismic behaviors. Finite element models were verified through a comparison of FEM results with experimental results. A parametric study was then performed using validated FEM models to investigate the effect of several parameters on the mechanical properties of RHC-PVCT short columns. The parameters study indicated that the concrete strength and the ratio of diameter to height affected the seismic performance of RHC-PVCT short column significantly.

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei;Zhitao Xie;Wei Zhang;Yan Yang;Xia Luo;Baochun Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.405-421
    • /
    • 2023
  • An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

An Experimental Study on the Concrete Filled Circular Steel Columns with D/t (지름두께비를 고려한 콘크리트충전 원형강관기둥에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-218
    • /
    • 1995
  • This paper presents an experimental study on the strength and deformation of concrete-filled circular steel short columns. Six specimens of concrete-filled circular short columns were tested under concentric compressive load. For comparsion, three specimens of circular steel short columns were also loaded to failure. The ultimate strength, ductility, and confinement mechanism of columns were compared. In the comparison, the effect of witch-thickness ratio and concrete compressive strength on the behavior of colimns were examed. As a result, the axial load verse axial average strain relationship of concrete-filled circular steel columns was very stable, because of interactions between the concrete and steel, the strength are 13% and 30% larger than the strength extimated by simply superimposed method of the concrete and steel. The ratio of the circumferential to longitudinal strain increment, both measured on the steel suface, was 0.28 up to the longitudinal strain of 0.1%, increases from 0.3 to 0.8 between the strain of 0.1% to 0.3%, and 0.8 beyond the strain of 0.3%

  • PDF

Experimental Study on Slenderness Effects in Concrete-Filled Glass Fiber Reinforced Polymer Composite Columns (콘크리트 충전 유리섬유 복합소재 기둥의 세장비 특성에 관한 실험적 연구)

  • Choi, Sok-Hwan;Lee, Sung-Woo;Sohn, Ki-Hoon;Lee, Myung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.585-590
    • /
    • 2001
  • The structural characteristics of concrete-filled glass fiber reinforced polymer tubes were studied. The concept of concrete-filled composite columns was introduced to overcome the corrosion problems associated with steel and concrete piles under severe environments. Other benefits of composite columns include low maintenance cost, high earthquake resistance, and long expected endurance period. Several experiments were conducted; 1) compression test for short-length composite columns, 2) uniaxial compression tests on a total of 7 columns with various slenderness ratios. Short-length columns give higher strength and ductility revealing high confinement action in concrete. Failure strengths, failure patterns, confinement effects, and stress-strains relations were analyzed for slender columns. Current study will show the feasibility of concrete-filled glass fiber reinforced polymer composite columns in corrosive environments, and will provide an experimental database for columns that are externally reinforced by multidirectional fibers.

  • PDF

Experimental behavior of eccentrically loaded RC slender columns strengthened using GFRP wrapping

  • Elwan, S.K.;Omar, M.A.
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.271-285
    • /
    • 2014
  • This paper aims to examine the behavior of slender reinforced concrete columns confined with external glass fiber reinforced polymers (GFRP) sheets under eccentric loads. The experimental work conducted in this paper is an extension to previous work by the author concerning the behavior of eccentrically loaded short columns strengthened with GFRP wrapping. In this study, nine reinforced concrete columns divided into three groups were casted and tested. Three eccentricity ratios corresponding to e/t = 0, 0.10, and 0.50 in one direction of the column were tested in each group. The first group was the control one without confinement with slenderness ratio equal 20. The second group was the same as the first group but fully wrapped with one layer of GFRP laminates. The third group was also fully wrapped with one layer of GFRP laminates but having slenderness ratio equal 15. The experimental results of another two groups from the previous work were used in this study to investigate the difference between short and slender columns. The first was control one with slenderness ratio equal 10 and the second was fully wrapped and having the same slenderness ratio. All specimens were loaded until failure. The ultimate load, axial deformation, strain in steel bars, and failure mechanisms of each specimen were generated and analyzed. The results show that GFRP laminates confining system is less effective with slender columns compared with short one, but this solution is still applied and it can be efficiently utilized especially for slender columns with low eccentric ratio.

Shear behavior of short square tubed steel reinforced concrete columns with high-strength concrete

  • Li, Xiang;Zhou, Xuhong;Liu, Jiepeng;Wang, Xuanding
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.411-422
    • /
    • 2019
  • Six shear-critical square tubed steel reinforced concrete (TSRC) columns using the high-strength concrete ($f_{cu,150}=86.6MPa$) were tested under constant axial and lateral cyclic loads. The height-to-depth ratio of the short column specimens was specified as 2.6, and the axial load ratio and the number of shear studs on the steel shape were considered as two main parameters. The shear failure mode of short square TSRC columns was observed from the test. The steel tube with diagonal stiffener plates provided effective confinement to the concrete core, while welding shear studs on the steel section appeared not significantly enhancing the seismic behavior of short square TRSC columns. Specimens with higher axial load ratio showed higher lateral stiffness and shear strength but worse ductility. A modified ACI design method is proposed to calculate the nominal shear strength, which agrees well with the test database containing ten short square TSRC columns with shear failure mode from this study and other related literature.

Buckling resistance of axially loaded square concrete-filled double steel tubular columns

  • Ci, Junchang;Ahmed, Mizan;Tran, Viet-Linh;Jia, Hong;Chen, Shicai;Nguyen, Tan N.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.689-706
    • /
    • 2022
  • Thin-walled square concrete-filled double steel tubular (CFDST) columns composed of the inner circular tube filled with concrete can be used to carry the large axial loads or strengthen existing CFST columns in composite constructions. This paper reports an experimental program carried out on short square CFDST columns loaded concentrically. The influences of important column parameters on the post-buckling performance of such columns are investigated. Test results exhibit that the inner circular tube significantly improves the ultimate loads and the ductility of such columns compared to conventional concrete-filled steel tubular (CFST) and double-skin CFST (DCFST) columns with an inner void. A mathematical model developed is used to simulate the ultimate strengths and load-strain curves of such columns loaded axially. Furthermore, the ultimate strengths of such columns are predicted using existing codified design models for conventional CFST columns as well as the formulas proposed by previous researchers and compared against a large database comprising 500 CFDST columns. Lastly, an accurate artificial neural network model is developed for the practical applications of such columns under axial loading.