• Title/Summary/Keyword: short circuit path

Search Result 25, Processing Time 0.017 seconds

Se Incorporation in VTD-SnS by RTA and Its Influence on Performance of Thin Film Solar Cells

  • Yadav, Rahul Kumar;Kim, Yong Tae;Pawar, Pravin S.;Heo, Jaeyeong
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.33-38
    • /
    • 2022
  • Planner configuration thin film solar cells (TFSCs) with SnS/CdS heterojunction performed a lower short-circuit current (JSC). In this study, we have demonstrated a path to overcome deficiency in JSC by the incorporation of Se in the SnS absorber. We carried out the incorporation of Se in VTD grown SnS absorber by rapid thermal annealing (RTA). The diffusion of Se is mostly governed by RTA temperature (TRTA), also it is observed that film structure changes from cube-like to plate-like structure with TRTA. The maximum JSC of 23.1 mA cm-2 was observed for 400℃ with an open-circuit voltage (VOC) of 0.140 V for the same temperature. The highest performance of 2.21% with JSC of 18.6 mA cm-2, VOC of 0.290 V, and fill factor (FF) of 40.9% is observed for a TRTA of 300℃. In the end, we compare the device performance of Se- incorporated SnS absorber with pristine SnS absorber material, increment in JSC is approximately 80% while a loss in VOC of about 20% has been observed.

A Study of Quench Behaviors in YBCO Flims for Superconducting Fault Current Limiter (기포발생에 따른 초전도 한류기용 YBCO 박막 퀜치특성 연구)

  • Kang, J.S.;Park, K.B.;Lee, B.W.;Oh, I.S.;Kim, H.R.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.796-798
    • /
    • 2002
  • In these days, the interruption capability of some circuit breakers, which are installed in the transmission systems, is getting lower than the magnitude of the fault current because of continuous increase of power demand and relatively short power line which was installed in forms of mesh network As a result of these situations, fault current limiters (FCLs) are strongly necessary. There are various types which is investigated around the world, and new power apparatuses that have been newly considered and developed by many manufactures. In this paper, we considered resistive superconducting fault current limiters with YBCO thin films. The resistive limiters utilize a transition of YBCO films from superconducting to normal state caused by exceeding the critical current. By means of newly occurred impedance, the fault current will be limited effectively. Generally, a few current path patterns are available for YBCO films to enhance the current limiting performance of YBCO films. In this paper. the meander-type and the bi-spiral-type were used for current paths of YBCO flims. When YBCO films are quenched into the normal state, bubbles could be observed on the surface of YBCO films. Using our high-speed camera, the number of bubbles and the size of bubbles could be visualized and the relation between bubbles and current density was analyzed. By means of moving pictures of bubbles, we observed how the quench extended or how the heat was conducted in films.

  • PDF

A Study on the Hydriding Reaction of Pre-oxidized Zr Alloys (산화막을 입힌 지르코늄 합금의 수소화 반응에 관한 연구)

  • Kim, Sun-Ki;Bang, Je-Geon;Kim, Dae-Ho;Lim, Ik-Sung;Yang, Yong-Sik;Song, Kun-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • This paper presents some experimental results on incubation time for massive hydriding of Zr alloys with oxide thickness. Oxide effects experiments on massive hydriding reaction of commercial Zr alloy claddings and pre-oxidized Zr alloys with hydrogen gas were carried out in the temperature range from 300 to $400^{\circ}C$ with thermo-gravimetric apparatus. Experimental results for oxide effects on massive hydriding kinetics show that incubation time is not proportional to oxide thickness and that the massive hydriding kinetics of pre-filmed Zr alloys follows linear kinetic law and the hydriding rate are similar to that of oxide-free Zr alloys once massive hydriding is initiated. There was a difference in micro-structures between oxide during incubation time and oxide after incubation time. Physical defects such as micro-cracks and pores were observed in only oxide after incubation time. Therefore, the massive hydriding of Zr alloys seems to be ascribed to short circuit path, mechacical or physical defects, such as micro-cracks and pores in the oxide rather than hydrogen diffusion through the oxide resulting from the increase of oxygen vacancies in the hypostoichiometric oxide.

Preparation of High Energy Density Lithium Anode for Thermal Batteries and Electrochemical Properties Thereof (열전지용 고에너지 밀도 리튬 음극 제조 및 이의 전기화학적 특성)

  • Im, Chae-Nam;Yu, Hye-Ryeon;Yoon, HyunKi;Cho, Jang-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.398-406
    • /
    • 2022
  • In order to increase the electrochemical performance of thermal battery anode, LIFT anode having the same weight but a larger lithium content in electrodes was fabricated by mixing lithium, iron and titanium. By applying these electrodes, a single cell and a thermal battery were prepared, and the effect of LIFT anode on electrochemical performance was evaluated. The LIFT-applied single cell presented a better cell performance than LIFe-applied single cell at 500℃ and 550℃. The discharge performance of LIFT-applied single cell, which included the operating time (787s), specific capacity (1,683 Asg-1), and electrode utilization (80.7%), was improved collectively compared to the LIFe applied single cell (736s, 1,245 As g-1, and 74.6%) at 500℃. As the discharge progressed, the internal resistance of LIFT anode decreased, because the lithium migration path was formed due to the presence of large titanium particles among iron particles. These results were analyzed in terms of the microstructure of electrode using SEM. Energy density of LIFT-applied single cell also increased by 10% to 142.1 Wh kg-1 compared to that of LIFe-applied single cell (127.4 Wh kg-1). In addition, the LIFT-applied single cell presented a stable discharge performance for 6,500s without a short circuit which could occur by molten lithium under an open circuit voltage condition with a high pressure (4 kgf cm-2). As observed in the high temperature thermal battery performance tests, the voltage and specific capacity of LIFT-applied thermal battery are superior to those of LIFe-applied thermal batteries, indicating that the energy density of LIFT-applied thermal batteries should remarkably increase.

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.