• Title/Summary/Keyword: shock-noise

Search Result 417, Processing Time 0.023 seconds

Analysis and Countermeasure for Shock-proof Performance of Laptop Computers (노트북 컴퓨터의 충격성능 분석 및 대책)

  • 임경화;윤영한;안채헌;김진규;이승은
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.490-495
    • /
    • 2001
  • This paper deals with an analysis and countermeasure for improving the shock performance of laptop computers. The shock analysis is carried out by using the commercial program of LS-DYNA3D. Also the analysis is verified by the measurements from modal tests and shock tests. The available countermeasures are investigated theoretically and experimentally to find the effective methods of reducing the shock acceleration on hard disk driver during one side fall test. The hard disk drive is the most sensitive part in a laptop computer. This research shows the effects of the spring constant of rubber pad, the reinforcement of mechanical parts and the location of a hard disk driver, on the shock reduction.

  • PDF

The Impingement of a Weak Shock Wave Discharged from a Tube Exit upon a Flat Plate (관 출구로부터 방출하는 약한 충격파의 평판충돌에 관한 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1035-1040
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Computations predicted the experimented results with a good accuracy. The peak pressure on the flat plate was not strongly dependent of the shock wave Mach number in the present range of Mach Number from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Topology Optimization of Passive Shock Isolator with Application to Ballistic Shock (발사충격을 고려한 수동충격저감기의 위상최적설계)

  • Wang, Se-Myung;Lim, Kook-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.406-410
    • /
    • 2006
  • Topology optimization of improved passive shock isolator by controlling its force-deflection relation is proposed. And the final design which is optimized using topology optimization is obtained using shape optimization. The proposed methods are applied to a numerical example using two dimensional-axisymmetric condition. And the performance of finally optimized design is verified through transient analysis using LS-DYNA. The ballistic shock isolator model is developed as a result of topology optimization. The optimized design has more improved shock absorbing capability comparing to the linear shock isolator by about 20%.

  • PDF

Development of Shock Testing M/C to Simulate Pyro-technic Device Explosion of Space vehicle (우주비행체 분리장치 작동에 의한 충격현상 모의 시험기 개발)

  • Kim, Hong-Bae;Oh, Jin-Ho;Moon, Sang-Mu;Woo, Sung-Hyun;Lee, Sang-Seol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.581-586
    • /
    • 2000
  • Explosively activated pyro-technic device is used to release exhausted rocket booster or payloads at prescribed times in the rocket's flight. It creates pyro-shock environment that rocket or payload components must survive. With the shock spectra acquired from flight data, laboratory test should be performed before flight to check whether all of component can sustain the shock environment. The pyro-shock environment simulation was created by the resonance fixture response to a projectile impact. Desired shock spectra is realized by adjusting the natural frequency of resonance plate and the velocity of impact hammer. This paper describes the development process of Pyro-shock testing machine, which is designed and tested by Korean engineers, to verify components of Korean Sounding Rocket(KSR-3) and the other Korean space vehicle. Both analytical and experimental techniques are introduced in this paper.

  • PDF

Shock Vibration Control of Hard-Disk Drive Using Coupled Shock Spectrum Analysis in Time-Frequency Domain (시간-주파수 영역에서의 연성 충격 스펙트럼 분석을 통한 하드디스크 드라이브의 충격진동 제어 (현장개발사례: SAMSUNG HDD 'SPINPOINT V40/P40 SERIES'))

  • Han, Yun-Sik;Kang, Seong-Woo;Oh, Dong-Ho;Hwang, Tae-Yeon;Son, Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1111-1116
    • /
    • 2001
  • A transient T-F(time-frequency) signal processing technique is applied to a tilt drop and a linear shock test rigs for identification of shock characteristics of hard disk drive (HDD). The T-F technique essentially tracks the shock characteristics of pivot point response as well as head slap and lift-off phenomena. From the T-F analysis result, the shock characteristic in HDD is modeled by the two degree of freedom coupled-dynamic system, which consists of actuator arm and suspension. As shock designing tool, the maximax shock response spectrum is employed for prediction of shock performance. Finally, the shock control technique is tested with newly designed actuator arm and suspension. Experimental head slap test result shows that the shock performance is much higher with the new shockproof designed model than the current model

  • PDF

An Experimental Study on the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음에 관한 실험적 연구)

  • Heo, Sung-Wook;Je, Hyun-Su;Yang, Soo-Young;Lee, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2066-2070
    • /
    • 2003
  • This experimental study describes the propagation characteristics and suppression of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The experiment is performed through the systematic change of the shock wave Mach number and the geometrical parameters such as the porosity, hole diameter and length of the perforated pipe. The experimental results for the near and far sound field are presented and explained in comparison with those for a straight pipe. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, the noise reduction performance of perforated pipe depends upon the condition of sound field. For the near sound field the perforated pipe has a little performance to suppress the impulse noise, but for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

Study of the Weak Shock Wave Propagating inside an Engine Exhaust Muffler (엔진 배기 소음기내를 전파하는 약한 충격파에 관한 연구)

  • 이동훈;권용훈;김희동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.510-519
    • /
    • 2002
  • The present study addresses a computational work of the weak shock wave propagating inside an automobile exhaust muffler. Several different types of the silencer systems are employed to investigate the magnitude of the shock wave during propagating through them. The Initial shock wave Mach number $M_s$ is varied between 1.01 and 1.30, and a normal shock wave is given at the inlet of the silencer systems. The second order total variation diminishing scheme Is employed to solve the two dimensional, compressible, unsteady Euler equations. The present computational results are compared with the previous experimental ones available. The present computations predict the experimental results with a quite good accuracy. Of the four silencer systems applied. the most desirable silencer system to reduce the peak pressure at the exalt of the exhaust pipe is discussed from the Point of view of the engineering design of the silencer systems.

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF

Robust Design of Leaf Spring of a Polygon Mirror Scanner Motor Against Shock (충격에 강인한 폴리곤 미러 스캐너 모터의 판 스프링 설계)

  • Lee, Sang-Wook;Kim, Myung-Gyu;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.515-520
    • /
    • 2008
  • This paper develops a mite element model of a polygon mirror scanner motor supported by the sintered bearing and flexible supporting structures to analyze the shock response by using the finite element method and the mode superposition method. The validity of the proposed model is verified by comparing the simulated natural frequencies and shock response with the experimental ones. It investigates the displacement and the stress of the most vulnerable component, i.e. a leaf spring due to shock, and it proposes a robust design of leaf spring of a polygon mirror scanner motor against shock.

  • PDF