• 제목/요약/키워드: shock wave

검색결과 982건 처리시간 0.03초

액적을 동반한 기체에서 이차원 충격파 회절 (TWO-DIMENSIONAL SHOCK WAVE DIFFREACTION IN DROPPET-LADEN GAS MEDIA)

  • 염금수;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.362-364
    • /
    • 2010
  • Shock wave interaction with droplet-gas medium is investigated in this paper. In the present computation, the shock wave is initially started in a pure gas and reflected from the wedge to interact with the droplet-ridden gas flows. We used the compressible two-fluid two-phase model that is solved by the two-fluid version of the HLL scheme. The interfacial drag force and heat transfer were included to model the interaction between continuous and dispersed phases. The parametric effect of void fraction on the shock wave reflection in the two-phase media was investigated.

  • PDF

분지관을 전파하는 약한 충격파에 관한 수치해석적 연구 (Study of the Shock Wave Propagating through a Branched Pipe Bend)

  • 김현섭;;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.165-168
    • /
    • 2002
  • This paper describes the dynamics of the weak shock wave propagating inside some kinds of branched pipe bends. Computations are carried out by solving the two-dimensional, compressible, unsteady Euler Equations. The second-order TVD(Total Variation Diminishing) scheme is employed to discretize the governing equations. For computations, two types of branched pipe($90^{\circ}$ branch,$45^{\circ}$ branch) with a diameter of D are used. The incident normal shock wave is assumed at D upstream of the pipe bend entrance, and its Mach number is changed between 1.1 and 2.4. The flow fields are numerically visualized by using the pressure contours and computed schlieren images. The comparison with the experimental data performed for the purpose of validation of computational work. Reflection and diffraction of the propagating shock wave are clarified. The present computations predicted the experimented flow field with a good accuracy.

  • PDF

고 출력 레이저 의한 충격파 현상 연구 및 응용 (Shock Compresssion and Microparticles Acceleration using High Power Laser)

  • 이현희;여재익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1916-1919
    • /
    • 2007
  • We have been setting up experiments on propagation of shock waves generated by the pulsed laser ablation. One side of a thin metal foil is subjected to laser ablation as a shock wave propagates through the foil. The shock wave, which penetrates through the foil is reflected by an acoustic impedance which causes the metal foil to high-strain rate deform. This short time physics is captured on an ICCD camera. The focus of our research is applying shock wave and deformation of the thin foil from the ablation to accelerating micro-particles to a very high speed.

  • PDF

초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석 (Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator)

  • 최정열;정인석;이수갑
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

경사충격파와 와류 상호작용에 대한 수치적 연구 (Numerical study on the oblique shock wave/vortex interaction)

  • 문성목;김종암;노오현
    • 한국항공운항학회:학술대회논문집
    • /
    • 한국항공운항학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.240-246
    • /
    • 2004
  • For the prediction on the onset of oblique shock wave-induced vortex breakdown, computational studies on the Oblique Shock wave/Vortex Interaction (OSVI) are conducted and compared with both experimental results and analytic model. A Shock-stable numerical scheme, the Roe scheme with Mach number-based function (RoeM), and a two-equation eddy viscosity-transport approach are used for three-dimensional turbulent flow computations. The computational configuration is identical to available experiment, and we attempt to ascertain the effect of parameters such as a vertex strength, streamwise velocity deficit, and shock strength at a freestream Mach number of 2.49. Numerical simulations using the ${\kappa}-{\omega}SST$ turbulence model and suitably modeled vortex profiles are able to accurately reproduce many fine features through a direct comparison with experimental observations. The present computational approach to determine the criterion on the onset of oblique shock wave-induced vortex breakdown is found to be in good agreement with both the experimental result and the analytic prediction.

  • PDF

운동파 이론의 충격파 처리기법 (Shock-Fitting in Kinematic Wave Modeling)

  • 박문형;최성욱;허준행;조원철
    • 한국수자원학회논문집
    • /
    • 제32권2호
    • /
    • pp.185-195
    • /
    • 1999
  • 운동파 이론의 수치해석에는 유한차분법과 특성곡선법이 주로 사용된다. 유한차분법의 경우 지배방정식의 차분과정에서 발생하는 절단오차에 의하여 첨두유량의 감쇠가 발생한다. 특성곡선법의 경우 첨두유량은 양호하게 보존되지만, 수치해석 과정에서 발생하는 충격파를 적절하게 고려하지 못한다. 본 연구에서는 운동파 이론에 근거한 각각의 수차해석 기법의 특성을 살펴보았으며, 특성곡선법으로 수치해석할 때 발생하는 충격파의 수치처리기법인 Propagating Shock Fitting 기법과 Approximate Shock Fitting 기법에 대하여 적용성을 파악하였다. Propagation Shock Fitting 기법은 충격파를 양호하게 처리하였으나 유로연장이 긴 하천에서 유량이 급변하는 경우 적절하게 충격파를 처리하지 못하였다. Propagation Shock Fitting 기법을 반복하여 계산하는 Approximate Shock Fitting 기법은 이러한 경우에 발생하는 충격파를 적절히 처리하는 것을 확인할 수 있었다. 충격파 처리기법에 의한 운동파 이론의 계산결과와 완전동력학파 이론에 의한 결과도 비교하고 토의하였다.

  • PDF

기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구 (A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow)

  • 전구식;백승철;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

Passive Prandtl-Meyer Expansion Flow with Homogeneous Condensation

  • Baek, Seung-Cheol;Kwon, Soon-Bum;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.407-418
    • /
    • 2004
  • Prandtl-Meyer expansion flow with homogeneous condensation is investigated experimentally and by numerical computations. The steady and unsteady periodic behaviors of the diabatic shock wave due to the latent heat released by condensation are considered with a view of technical application to the condensing flow through steam turbine blade passages. A passive control method using a porous wall and cavity underneath is applied to control the diabatic shock wave. Two-dimensional, compressible Navier-Stokes with the nucleation rate equation are numerically solved using a third-order TVD (Total Variation Diminishing) finite difference scheme. The computational results reproduce the measured static pressure distributions in passive and no passive Prandtl-Meyer expansion flows with condensation. From both the experimental and computational results, it is found that the magnitude of steady diabatic shock wave can be considerably reduced by the present passive control method. For no passive control, it is found that the diabatic shock wave due to the heat released by condensation oscillates periodically with a frequency of 2.40㎑. This unsteady periodic motion of the diabatic shock wave can be completely suppressed using the present passive control method.

충격파 저감을 위한 ER 지능구조물 (ER Smart Structures for Shock Wave Reduction)

  • 김재환;김지선;최승복;김경수
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.679-687
    • /
    • 2003
  • Shock wave reduction in electrorheological(ER) smart structures is studied. ER insert is a composite structure comprising two elastic outer layers between which is sandwiched layer of ER fluid. When a voltage is applied across the outer layers. the shear modulus and the loss factor of the ER fluid are enabled, and thus the dynamic properties of the composite structure is altered. For the shock wave reduction in a hull mount of a submerged structure, ER inserts are made on the hull mount structure. To investigate the ER insert shape. many types of ER insert pattern are considered. Modal test of ER insert structures is performed to obtain the mode shapes, natural frequencies and the acceleration transmissibility. The acceleration transmissibility is reduced at such a frequency region when an electric field is applied. It is observed that the natural frequencies and mode shapes can be tunable by applying electric field. The ER-inserted hull mount is installed in an integrated system and the overall performance of shock wave reduction is tested. The possibility of shock wave reduction in the hull mount is demonstrated.

ESWL 장치에 의한 방사음 및 파쇄효율에 미치는 캐비테이션의 영향 (Cavitation Effects on Radiated Sounds and Break Efficiency Induced by Piezoelectric Extracorporeal Shock Wave Lithotripter)

  • 장윤석
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권2호
    • /
    • pp.205-210
    • /
    • 2001
  • 결석 파쇄에 ES지 장치가 이용되기 시작한 이래, 장치의 성능 및 장치에서 발생시킨 충격파가 생체에 미치는 영향등에 관한 연구가 다수 행해지고 있다. 그 중의 하나가 충격파가 전달되는 곳에는 항상 거론되는 캐비테이션 문제이다. 본 연구에서는 압전식 ESWL 장치로 대상물을 파쇄한다는 가정하에, 그 때의 매질을 캐비테이션이 미치는 영향과 관련지어 둘로 구분한다. 그것에 따라 각 매질에서의 방사음을 관측하고, 매질에 따른 파쇄효율과의 관계를 분석한 결과를 제시한다. 본 논문의 결과들은 캐비테이션 기포의 발생율이 작은 탈기수쪽이 방사음에 있어서도 분산성이 작고, 파쇄효율면에 있어서도 안정된 점을 확실히 나타내고 있다.

  • PDF