• Title/Summary/Keyword: shock wave

Search Result 986, Processing Time 0.031 seconds

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

Flow-Induced Vibration Characteristics of a Missile Control Surface Considering Shock Wave and Structural Nonlinearity (충격파 및 구조비선형성을 고려한 미사일 조종면의 유체유발 진동특성)

  • Kim, Dong-Hyun;Lee, In;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.389.2-389
    • /
    • 2002
  • Nonlinear aeroelastic characteristics of a missile control surface are investigated in this study. The wing model has freeplay structural nonlinearity at its pitch axis. Nonlinear aerodynamic flows with unsteady shock waves are also considered in high-speed flow region. To effectively consider a freeplay structural nonlinearity, the fictitious mass method (FMM) is applied to structural vibration analysis based on finite element method (FEM). (omitted)

  • PDF

A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow (비평형 응축이 충격파 진동에 미치는 영향에 관한 수치 해석적 연구)

  • Jeon, Heung Kyun;Kim, In Won;Kwon, Young Doo;Kwon, Soon Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of ${\alpha}=0^{\circ}$, the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of $M_{\infty}=0.87$ and ${\phi}_0=60%$, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of ${\phi}_0=30%$ amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in $C_D$ become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

Inspection on the acoustic output of the focused extracorporeal focused shock wave therapeutic devices approved by MFDS (식약처에서 허가된 집속형 ESWT 치료기의 음향 출력 분석)

  • Choi, Min Joo;Jeon, Sung Joung;Kwon, Oh Bin;Lee, Min Young;Cho, Jin Sik;Kim, Han Soo;Maeng, Eun Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.303-317
    • /
    • 2020
  • Extracorporeal Shock Wave Therapy (ESWT) is an innovative treatment in chronic musculoskeletal pain management and cardiovascular diseases. In this study, we surveyed the acoustic shock wave outputs from the domestically used focal type ESWT devices. The survey data were collected through 30 technical documents registered to the Ministry of Food and Drug Safety (MFDS), Rep. Korea. The results show that the focusing geometry varies largely, 5 mm to 65 mm in the focal length, 3 mm to 30 mm in focal width, and 4 mm to 108 mm in focal depth. The maximum positive pressure (P+) ranges from 7 MPa to 280 MPa, the focal Energy Flux Density (EFD) from 0.0035 mJ/㎟ to 35 mJ/㎟, and the energy per pulse (E) from 0.737 mJ to 80.86 mJ. All domestic PE-type (five) and one EM-type domestic devices included in the analysis of the correlation between P+ and EFD are shown to be far beyond the usual ranges and do not comply with expected correlation so that the reliability of their data was suspected. For the suspected, post-performance tests are required by a recognized testing agency. MFDS guidelines need to be revised so that the pass criteria for the shock wave acoustic outputs can be based on the clinical tests for indications.

Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems (발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구)

  • Shin, Jeung-Hwan;Lee, In-Chul;Kim, Heuy-Dong;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

A Study on Dynamic Strength Analysis of Submarine Considering Underwater Explosion (내충격 성능을 고려한 수중함 동적 강도 설계에 관한 연구)

  • Son, Sung-Wan;Choi, Su-Hyun;Kim, Kuk-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1185-1191
    • /
    • 2000
  • In general, the strength of hull structures can be estimated from stress evaluation considering static and hydro-dynamic load due to sea-wave. However, war ships such as submarine, have frequently experienced the underwater explosion and local structures of ship as well as hull girder can be damaged by the dynamic response excited from underwater non-contact explosion. When explosion happens at underwater, shock wave is radiated In early short time, then gas bubbles are generated, and expansion and contraction are repeated as they float to the surface. The shock wave causes the damage of equipment and its supporting structures, on the other hand, the hull girder strength can be lost by resonance between bubble pulsation and lowest ship natural vibration period. In this paper, the hydro-Impulse force due to bubble was calculated. Based on these results the hull girder strength of submarine was estimated from transient response analysis by using NASTRAN. Also, shock analysis for some equipment supporting structures was carried out by using DDAM. In order to evaluate the strength of these local structures due to shock wave.

  • PDF

A Study on the Flow of POSRV in Reactor Coolant System (원자로 냉각계통의 POSRV 유동에 관한 연구)

  • Kwon, Soon-Bum;Kim, In-Goo;Ahn, Hyung-Joon;Lee, Dong-Won;Baek, Seung-Cheol;Kim, Kyung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.568-573
    • /
    • 2003
  • When a safety valve equipped in a nuclear power plant opens in an instant by an accident, a moving shock wave propagates downstream the valve, inducing a complicated unsteady flow field. The moving shock wave may exert severe load to the structure. So, to reduce the load acting on the wall of POSRV, a gradual opening of POSRV is adopted in general. In theses connections, a numerical work is performed to investigate the effect of valve opening time on the unsteady flow fields downstream of the valve. Compressible, two-dimensional Navier-Stokes equations are used with the finite volume method. The obtained results show that sharp pressure rise through moving shock tor the case of instant opening is attenuated by employing the gradual opening of valve. It is turned that the flows for the two cases of gradual valve opening time show the similar to that of highly under-expanded one in jet structure having expansion and compression waves and Mach stem. Also, comparing with the results for the two cases of opening time, the shorter the valve opening is, the pressure gradient at the downstream of the valve becomes softly.

  • PDF

The Relativity between Vibration of Phantom and Its Break Efficiency Due to Position of Focus Induced by Piezoelectric Extracorporeal Shock Wave Lithotripter (압전식 충격파 체외 쇄석기 사용시 초점위치에 의한 대상물의 진동과 파쇄효율과의 상관성)

  • 장윤석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.35-40
    • /
    • 2000
  • In this paper, the relation between the radiated sound and the vibration due to piezoelectric ESWL(Extracorporeal Shock Wave Lithotripter) is examined and the results of the experiments are represented. Next, the relation between the focal point and the vibration of the objects is examined. The same experiments with the objects that can be broken are done and the relation between the vibration and the break efficiency of the phantom is experimentally investigated. These results show that the relativity between the power of the peak frequency and the break efficiency can be confirmed.

  • PDF