• Title/Summary/Keyword: shock sound

Search Result 123, Processing Time 0.025 seconds

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube (다공관형 초음속 배기노즐의 공력소음에 관한 연구)

  • 이동훈
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

An Analysis of Supersonic Jet Noise with a Converging-Diverging Nozzle (C-D 노즐을 고려한 초음속 제트 소음 해석)

  • Kim Yong Seok;Lee Duck Joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.389-392
    • /
    • 2001
  • To investigate the generation mechanism of the shock-associated noise, an underexpanded supersonic jet from an axisymmetic nozzle is simulated under the conditions of the Nozzle exit Mach number of 2 and the exit pressure ratio of Pe/Pe =1.5. The present simulation is performed based on the high-order accuracy and high-resolution ENO (Essentially Non-Oscillatory) scheme to capture the time-dependent flow structure representing the sound source. It was found that the shock-associated noise is generated by the weak interaction between the downstream propagating large turbulence structures of the jet flow and the quasi-periodic shock cell structure during the one is passing through the other. The directivity of propagating waves to the upstream is clearly shown in the visualization of pressure field. It is shown that the present calculation of the centerline pressure distribution is in fare agreement with the experimental data at the location of first shock cell.

  • PDF

Biochemical Analysis of Physiological Stress Induced by High Frequency Sound Treatment in the Beet Armyworm, Spodoptera exigua (고주파 처리에 따른 파밤나방(Spodoptera exigua)의 생리적 스트레스의 생화학적 분석)

  • Kim, Yong-Gyun;Son, Ye-Rim;Seo, Sam-Yeol;Park, Bok-Ri;Park, Jung-A
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.255-263
    • /
    • 2012
  • High frequency sounds disrupt physiological processes, such as feeding behavior, development and immune responses of Spodoptera exigua. We analyzed high frequency sounds with respect to biochemical changes in S. exigua. High frequency sound (5,000 Hz, 95 dB) suppressed protein synthesis and secretion of midgut epithelium. It also significantly inhibited a digestive enzyme activity of phospholipase $A_2$. The gene expression of three different heat shock proteins and apolipophorin III was altered, particularly in midgut tissue in response to high frequency sound treatments. High frequency sound treatments significantly increased sugar and lipid levels in hemolymph plasma. These results suggest that high frequency sounds are a physiological stress that induces biochemical changes in S. exigua.

An Experimental Study on the Propagation Characteristics of the Impulse Noise from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성에 관한 실험적 연구)

  • Heo, Sung-Wook;Lee, Myeong-Ho;Lee, Dong-Hoon;Hwang, Yoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.15-21
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube facility. The pressure amplitudes and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are measured and analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the experiments. the impulse waves are visualized by a Schlieren optical system for the purpose of understanding their propagation characteristics. The results obtained show that for the near sound field the impulse noise strongly propagates toward the pipe axis, but for the far sound field the impulse noise uniformly propagates toward the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. For this non-directivity in the far sound field, it is shown that the perforated pipe has little performance to suppress the impulse noise.

Analysis of Vibration and Its Break Efficiency Due to Focal Position Induced by Piezoelectric Extracorporeal Shock Wave Lithotripter (압전식 ESWL장치를 사용한 대상물 진동시 초점위치에 따른 진동 및 파쇄효율의 분석)

  • 장윤석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.186-189
    • /
    • 2000
  • In this paper, the relation between the vibration and the sound radiated due to the piezoelectric ESWL (Extra-corporeal Shock Wave Lithotripter) is examined And the relation between the focus and the vibration of the objects is examined. The same experiments with the objects that can be breton are done and the relation between the vibration and the break efficiency of the phantom is experimentally investigated. These results show that the relativity between the power of the peak frequency and the break efficiency can be confirmed.

  • PDF

The Application of Generalized Characteristic Coordinate System

  • Wu Z. N.;Chen Z.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.126-127
    • /
    • 2003
  • In the generalized characteristic coordinate system (GCCS) proposed by Wu and Shi [1], the frame moves at a speed which is a linear combination of the convective speed and the sound speed, thus unifying the classical Eulerian approach, Lagrangian approach, and the unified coordinate system (UCS) of Hui and his co-workers [2]. Here some properties of Euler equations in the GCCS are studied and the advantages of GCCS in capturing expansion fans and shock waves are demonstrated by the results of numerical tests.

  • PDF

Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet (노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감)

  • 김진화;유정열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

Cavitation Effects on Radiated Sounds and Break Efficiency Induced by Piezoelectric Extracorporeal Shock Wave Lithotripter (ESWL 장치에 의한 방사음 및 파쇄효율에 미치는 캐비테이션의 영향)

  • 장윤석
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.205-210
    • /
    • 2001
  • The effectiveness of extracorporeal shock wave lithotripter for the therapy of calculus has been well known in the field of urology. There are many studies about the performance of that and the influence into human body. Among them, it is an impertant issue that cavitation is always deal with shock wave. A medium of the shock wave is related to the cavitation phenomenon. In this paper, therefore, we analysis the spectra of radiated sounds and the break efficiency on focal region due to the medium of shock wave. The results show that the cavitation bubbles produce a harmful on the break efficiency and the stability of the radiated sounds due to the ESWL.

  • PDF

Computation of Sound Radiation in an AxisymmetricSupersonic Jet

  • Kim, Yong-Seok;Lee, Duck-Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.18-27
    • /
    • 2004
  • An axisymmetric supersonic jet is simulated at a Mach number 2.1 and a Reynolds numberof 70000 to identify the mechanism of Mach wave generation and radiation from the jet. In orderto provide the near-field radiated sound directly and resolve the large-scale vortices highly.high-resolution essentially non-oscillatory(ENO) scheme, which is one of the ComputationalAeroAcoustics(CAA) techniques, is newly employed. Perfectly expanded supersonic jet is selectedas a target to see pure shear layer growth and Mach wave radiation without effect of change injet cross section due to expansion or shock wave generated at nozzle exit. The sound field ishighly directional and dominated by Mach waves generated near the end of potential core. Thenear field sound pressure levels as well as the aerodynamic properties of the jet, such asmean-flow parameters are in fare agreement with experimental data.

ARC Discharge Sound Source in Underwater (수중 아-크 방전음원에 관한 연구)

  • Chang, Jea-Hwan;Chang, Jee-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 1985
  • In general the impulse sound sources of underwater generated by electric arc discharge had used static energy of the charged capacitors. The author proposed an underwater arc discharge sound source using secondary voltage of high voltage transformer without capacitors. The arc discharge device was composed of a high voltage transformer and a switching system. The impulse current in the primary turn of the high voltage transformer is controlled by the switching system and inductive current of the secondary turn in the high voltage transformer is used in making impulsive arc discharge. A series of experiment have been carried out to observe the acoustic characteristics of the impulse sound source generated by the arc discharge. The results obtained were as follows: 1. Secondary current at the time of arc discharge keeps after ohm's law in the beginning and the maximum current flows out as soon as arc discharge breaks out. 2. A time difference between a start of applied current and a generation of arc discharge sound is the 3msec and it is generated arc sound when breaking down electric insulation at maximum voltage. 3. The sharper the end of electrodes and the higher the secondary voltage, the higher the sound pressure level. 4. Arc discharge sound was generated even at the distance of 100cm between electrodes and was stably reproductive at the gap of 1cm to 100cm. 5. Electric arc discharge sound wave is a shock wave of pulse-width of 0.15msec and spectral distribution of it is plenty of low frequency components less than 10 KHz.

  • PDF