• Title/Summary/Keyword: shock proteins

Search Result 372, Processing Time 0.024 seconds

Potential Efficacy of Multiple-shot Long-pulsed 1,064-nm Nd:YAG in Nonablative Skin Rejuvenation: A Pilot Study

  • Kim, Young-Koo;Lee, Hae-Jin;Kim, Jihee
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.159-165
    • /
    • 2020
  • Background and Objectives The ultimate goal in current skin rejuvenation practice is to achieve a good result with minimal pain and downtime. Nonablative skin rejuvenation (NSR) is one technique. The efficacy of the long-pulsed 1064 nm Nd:YAG laser (LPNDY) has not been assessed in NSR. Materials and Methods Three target areas were selected (bilateral cheeks and glabellar region) in six volunteer subjects. A LPNDY with an integral skin temperature monitor delivered three stacked shots to each target area (1064 nm, 12 mm spot, 13 J/cm2, 1 Hz) without any skin cooling or anesthesia. The skin temperature was recorded before, during, and after each set of shots using the system monitor and in real-time using a high-sensitivity (±0.001℃) near-infrared video camera. The skin reaction was observed with the naked eye, and pain and discomfort were assessed by the subjects during and after treatment. Results The subjects reported a mild feeling of heat with no discomfort during or after the test treatments. Mild erythema was observed around the treatment areas, without noticeable edema. A series of three ascending skin temperature stepwise peaks, with a decrease in skin temperature towards the baseline after the third shot, was observed consistently. The mean temperatures for shots 1, 2, and 3 for the cheeks were 39.5℃, 42.0℃, and 44.4℃, respectively, and for the glabella, 40.8℃, 43.9℃, and 46.2℃, respectively. Similar ranges were indicated on the system integral temperature monitor. Conclusion A set of three stacked pulses with the LPNDY at a low fluence achieved ideal dermal temperatures to achieve some dermal remodeling but without any downtime or adverse events. The temperature data from the integral thermal sensor matched the video camera measurements with practical accuracy for skin rejuvenation requirements. These data suggest that LPNDY would satisfy the necessary criteria to achieve effective NSR, but further studies will be needed to assess the actual results in clinical practice.

A novel mechanism of Korean Red Ginseng-mediated anti-inflammatory action via targeting caspase-11 non-canonical inflammasome in macrophages

  • Min, Ji-Hyun;Cho, Hui-Jin;Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.675-682
    • /
    • 2022
  • Background: Korean Red Ginseng (KRG) was reported to play an anti-inflammatory role, however, previous studies largely focused on the effects of KRG on priming step, the inflammation-preparing step, and the anti-inflammatory effect of KRG on triggering, the inflammation-activating step has been poorly understood. This study demonstrated anti-inflammatory role of KRG in caspase-11 non-canonical inflammasome activation in macrophages during triggering of inflammatory responses. Methods: Caspase-11 non-canonical inflammasome-activated J774A.1 macrophages were established by priming with Pam3CSK4 and triggering with lipopolysaccharide (LPS). Cell viability and pyroptosis were examined by MTT and lactate dehydrogenase (LDH) assays. Nitric oxide (NO)-inhibitory effect of KRG was assessed using a NO production assay. Expression and proteolytic cleavage of proteins were examined by Western blotting analysis. In vivo anti-inflammatory action of KRG was evaluated with the LPS-injected sepsis model in mice. Results: KRG reduced LPS-stimulated NO production in J774A.1 cells and suppressed pyroptosis and IL-1β secretion in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Mechanistic studies demonstrated that KRG suppressed the direct interaction between LPS and caspase-11 and inhibited proteolytic processing of both caspase-11 and gasdermin D in caspase-11 non-canonical inflammasome-activated J774A.1 cells. Furthermore, KRG significantly ameliorated LPS-mediated lethal septic shock in mice. Conclusion: The results demonstrate a novel mechanism of KRG-mediated anti-inflammatory action that operates through targeting the caspase-11 non-canonical inflammasome at triggering step of macrophage-mediated inflammatory response.

Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis

  • Hongming Lv;Yvxi He;Jingjing Wu; Li Zhen ;Yvwei Zheng
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2023
  • Background: Hypothermia is a crucial environmental factor that elevates the risk of cardiovascular disease, but the underlying effect is unclear. Objectives: This study examined the role of cold stress (CS) in cardiac injury and its underlying mechanisms. Methods: In this study, a chronic CS-induced myocardial injury model was used; mice were subjected to chronic CS (4℃) for three hours per day for three weeks. Results: CS could result in myocardial injury by inducing the levels of heat shock proteins 70 (HSP70), enhancing the generation of creatine phosphokinase-isoenzyme (CKMB) and malondialdehyde (MDA), increasing the contents of tumor necrosis factor-α (TNF-α), high mobility group box 1 (HMGB1) interleukin1b (IL-1β), IL-18, IL-6, and triggering the depletion of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). Multiple signaling pathways were activated by cold exposure, including pyroptosis-associated NOD-like receptor 3 (NLRP3)-regulated caspase-1-dependent/Gasdermin D (GSDMD), inflammation-related toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK), as well as oxidative stressinvolved thioredoxin-1/thioredoxin-interacting protein (Txnip) signaling pathways, which play a pivotal role in myocardial injury resulting from hypothermia. Conclusions: These findings provide new insights into the increased risk of cardiovascular disease at extremely low temperatures.

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

  • Hao Shi ;Jiamin Zhao ;Yiwen Li ;Junjie Li ;Yunjia Li;Jia Zhang ;Zhantu Qiu ;Chaofeng Wu ;Mengchen Qin ;Chang Liu ;Zhiyun Zeng ;Chao Zhang ;Lei Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.4
    • /
    • pp.524-533
    • /
    • 2023
  • Background: Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance Methods: Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression Results: We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance Conclusion: Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

Comparison of Gene Expression Changes in Three Wheat Varieties with Different Susceptibilities to Heat Stress Using RNA-Seq Analysis

  • Myoung Hui Lee;Kyeong-Min Kim;Wan-Gyu Sang;Chon-Sik Kang;Changhyun Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.197-197
    • /
    • 2022
  • Wheat is highly susceptible to heat stress, which significantly reduces grain yield. In this study, we used RNA-seq technology to analyze the transcript expression at three different time-points after heat treatment in three cultivars differing in their susceptibility to heat stress: Jopum, Keumkang, and Olgeuru. A total of 11,751, 8850, and 14,711; 10,959,7946, and 14,205; and 22,895,13,060, and 19,408 differentially-expressed genes (log2 fold-change > 1 and FDR (padj) < 0.05) were identified in Jopum, Keumkang, and Olgeuru in the control vs. 6-h, in the control vs. 12-h, and in the 6-h vs. 12-h heat treatment, respectively. Functional enrichment analysis showed that the biological processes for DEGs, such as the cellular response to heat and oxidative stress-and including the removal of superoxide radicals and the positive regulation of superoxide dismutase activity-were significantly enriched among the three comparisons in all three cultivars. Furthermore, we investigated the differential expression patterns of reactive oxygen species (ROS)-scavenging enzymes, heat shock proteins, and heat-stress transcription factors using qRT-PCR to confirm the differences in gene expression among the three varieties under heat stress. This study contributes to a better understanding of the wheat heat-stress response at the early growth stage and the varietal differences in heat tolerancea.

  • PDF

Whole genome sequence analyses of thermotolerant Bacillus sp. isolates from food

  • Phornphan Sornchuer;Kritsakorn Saninjuk;Pholawat Tingpej
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.35.1-35.12
    • /
    • 2023
  • The Bacillus cereus group, also known as B. cereus sensu lato (B. cereus s.l.), is composed of various Bacillus species, some of which can cause diarrheal or emetic food poisoning. Several emerging highly heat-resistant Bacillus species have been identified, these include B. thermoamylovorans, B. sporothermodurans, and B. cytotoxicus NVH 391-98. Herein, we performed whole genome analysis of two thermotolerant Bacillus sp. isolates, Bacillus sp. B48 and Bacillus sp. B140, from an omelet with acacia leaves and fried rice, respectively. Phylogenomic analysis suggested that Bacillus sp. B48 and Bacillus sp. B140 are closely related to B. cereus and B. thuringiensis, respectively. Whole genome alignment of Bacillus sp. B48, Bacillus sp. B140, mesophilic strain B. cereus ATCC14579, and thermophilic strain B. cytotoxicus NVH 391-98 using the Mauve program revealed the presence of numerous homologous regions including genes responsible for heat shock in the dnaK gene cluster. However, the presence of a DUF4253 domain-containing protein was observed only in the genome of B. cereus ATCC14579 while the intracellular protease PfpI family was present only in the chromosome of B. cytotoxicus NVH 391-98. In addition, prophage Clp protease-like proteins were found in the genomes of both Bacillus sp. B48 and Bacillus sp. B140 but not in the genome of B. cereus ATCC14579. The genomic profiles of Bacillus sp. isolates were identified by using whole genome analysis especially those relating to heat-responsive gene clusters. The findings presented in this study lay the foundations for subsequent studies to reveal further insights into the molecular mechanisms of Bacillus species in terms of heat resistance mechanisms.

Immunogenic Cell Death Induced by Ginsenoside Rg3: Significance in Dendritic Cell-based Anti-tumor Immunotherapy

  • Keum-joo Son;Ki ryung Choi;Seog Jae Lee;Hyunah Lee
    • IMMUNE NETWORK
    • /
    • v.16 no.1
    • /
    • pp.75-84
    • /
    • 2016
  • Cancer is one of the leading causes of morbidity and mortality worldwide; therefore there is a need to discover new therapeutic modules with improved efficacy and safety. Immune-(cell) therapy is a promising therapeutic strategy for the treatment of intractable cancers. The effectiveness of certain chemotherapeutics in inducing immunogenic tumor cell death thus promoting cancer eradication has been reported. Ginsenoside Rg3 is a ginseng saponin that has antitumor and immunomodulatory activity. In this study, we treated tumor cells with Rg3 to verify the significance of inducing immunogenic tumor cell death in antitumor therapy, especially in DC-based immunotherapy. Rg3 killed the both immunogenic (B16F10 melanoma cells) and non-immunogenic (LLC: Lewis Lung Carcinoma cells) tumor cells by inducing apoptosis. Surface expression of immunogenic death markers including calreticulin and heat shock proteins and the transcription of relevant genes were increased in the Rg3-dying tumor. Increased calreticulin expression was directly related to the uptake of dying tumor cells by dendritic cells (DCs): the proportion of CRT+CD11c+cells was increased in the Rg3-treated group. Interestingly, tumor cells dying by immunogenic cell death secreted IFN-γ, an effector molecule for antitumor activity in T cells. Along with the Rg3-induced suppression of pro-angiogenic (TNF-α) and immunosuppressive cytokine (TGF-β) secretion, IFN-γ production from the Rg3-treated tumor cells may also indicate Rg3 as an effective anticancer immunotherapeutic strategy. The data clearly suggests that Rg3-induced immunogenic tumor cell death due its cytotoxic effect and its ability to induce DC function. This indicates that Rg3 may be an effective immunotherapeutic strategy.

The Effects of Dietary Supplementation of Vitamin C and E on the Growth Performance and the Stress Response in Broiler Chickens (육계에서 비타민 C 및 E의 첨가 급여가 성장 능력과 스트레스 반응에 미치는 영향)

  • Sohn, Sea Hwan;Cho, Eun Jung;Jang, In Surk;Moon, Yang Soo
    • Korean Journal of Poultry Science
    • /
    • v.40 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • This study was performed to investigate the investigated effects of dietary supplementation of vitamin C and E on the growth performance and stress response in broiler chickens. Stress response was analyzed by the quantity of telomeric DNA, the rate of DNA damage and the expression levels of heat shock proteins (HSPs) and hydroxyl-3-methyl-glutaryl coenzyme A reductase (HMGCR) genes on tissues and blood. The telomere length and telomere shortening rates were analyzed by quantitative fluorescence in situ hybridization on the nuclei of lymphocytes and tissues. The DNA damage rate of lymphocytes was quantified by the comet assay. The expression levels of HSP70, HSP90s and HMGCR genes were measured by quantitative real-time polymerase chain reaction in lymphocytes. In results, there was no significant difference among treatments in body weight, weight gain, feed intake and mortality. The telomere shortening rate of the lymphocytes was significantly lower in the vitamin E supplemented group than the control group. The DNA damage was also decreased supplemented with vitamin C and E, as compared to the control group. The vitamin E supplemented group had a significant positive effect on the expressions of HMGCR, HSP90-${\alpha}$ and HSP90-${\beta}$ in lymphocytes, but had no significance on HSP70, as compared to the control group. We concluded that the dietary supplementation of vitamin E (100 mg/kg feed) had reduced the individual physiological stress response without stunt growth in broiler chickens.

Effects of L-proline on the Growth Performance, and Blood Parameters in Weaned Lipopolysaccharide (LPS)-challenged Pigs

  • Kang, Ping;Zhang, Lili;Hou, Yongqing;Ding, Binying;Yi, Dan;Wang, Lei;Zhu, Huiling;Liu, Yulan;Yin, Yulong;Wu, Guoyao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.8
    • /
    • pp.1150-1156
    • /
    • 2014
  • This trail was conducted to study the effect of L-proline on the growth performance, and blood parameter in the weaned lipopolysaccharide (LPS)-challenged pigs. Thirty six pigs ($9.13{\pm}0.85$ kg) were assigned randomly to dietary treatments in a $2{\times}3$ factorial arrangement in a 20-d growth assay. Factors were intraperitoneal injection with saline or LPS, and three dietary L-proline supplement levels (0%, 0.5%, or 1.0%). On d 10, blood samples were collected at 3 h after LPS (100 ${\mu}g$ LPS/kg body weight [BW]) or saline injection. On d 20 of the trial, all pigs were orally administrated D-xylose (0.1 g/kg BW) at 2 h, and blood samples were collected at 3 h after LPS or saline injection. As a result, dietary supplementation with 0.5% proline had a tendency to increase average daily gain (ADG) in piglets during d 10 to 20 (p = 0.088). Without LPS challenge, dietary supplementation with 1.0% proline had no effect on growth hormone (GH) concentrations on d 10 (p>0.05), but decreased it after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for GH concentrations on d 10 (p<0.05). Dietary supplementation with 1.0% proline decreased glucagon concentration on d 10 after LPS challenge (p<0.05). In addition, dietary supplementation with proline increased superoxide dismutase (SOD) activity significantly on d 10 and 20 (p<0.05), and 1.0% proline increased heat shock proteins-70 concentration on d 10 (p<0.05). Moreover, proline supplementation increased diamine oxidase (DAO) concentrations after LPS challenge (p<0.05). There was LPS challenge${\times}$proline interaction for DAO (p<0.05). Furthermore, dietary supplementation with 1.0% proline increased the D-xylose level when no LPS challenge (p<0.05). These results indicate that proline supplementation could improve growth performance, increase SOD activities, and has a positive effect on the gastrointestinal tract digestibility in early weaned pigs.

Correlation between blood, physiological and behavioral parameters in beef calves under heat stress

  • Kim, Won Seob;Lee, Jae-Sung;Jeon, Seung Woo;Peng, Dong Qiao;Kim, Young Shin;Bae, Mun Hee;Jo, Yong Ho;Lee, Hong Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.6
    • /
    • pp.919-925
    • /
    • 2018
  • Objective: The performance, health, and behaviour of cattle can be strongly affected by climate. The objective of this study was to determine the effect of heat stress on blood parameters, blood proteins (haptoglobin [Hp]; heat shock protein 70 [HSP70]), rectal temperature (RT), heart rate (HR) and rumination time in Korean native beef calves. Methods: Thirty-two Korean native beef calves were randomly assigned to 8 groups with 4 animals per group. They were kept in environmental condition with temperature-humidity index (THI) ranging from 70.01 to 87.72 in temperature-humidity controlled chamber for 7 days. Results: Their HR, RT, and serum cortisol and HSP70 levels were increased (p<0.05) in high THI compared to those at low THI. But, serum Hp level was decreased (p<0.05) in high THI compared to these at low THI. In addition, HR, RT, serum cortisol and HSP70 were positively correlated with THI ($R^2=0.8368$, p<0.01; $R^2=0.6162$, p<0.01; $R^2=0.581$, p<0.01; $R^2=0.2241$, p = 0.0062, respectively). There was also positive association between HR and cortisol ($R^2=0.4697$, p<0.01). Similarly, RT and cortisol were positively associated ($R^2=0.4581$, p<0.01). But, THI and HR were negatively correlated with Hp ($R^2=0.2157$, p = 0.02; $R^2=0.3362$, p = 0.003). Hematology and metabolites results were different among treatment groups. Standing position was higher (p<0.05) in the high THI group compared to that in the low THI group. Conclusion: Based on these results, it can be concluded that HR, RT, blood parameters (Cortisol, HSP70, Hp) and standing position are closely associated with heat stress. These parameters can be consolidated to develop THI chart for Korean native beef calves.