• 제목/요약/키워드: ship strength

검색결과 574건 처리시간 0.023초

Longi-web 연결부의 피로강도 평가에 관한 실험적 연구 (An Experimental Study for the Fatigue Strength Assessment of Longi-web Connections)

  • 강성원;김정환;김광석;강중규;허주호;김명현
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.87-92
    • /
    • 2008
  • In the load-carrying fillet weldments, which are common in ship structures, fatigue cracks can occur at the weld root, in addition to the weld toe. In particular, fatigue cracks originating from the weld root are difficult to detect and cause a significant reduction in the fatigue strength of a weldment. Therefore, it is important to note the fatigue failure mode of load-carrying fillet weldment. In this study, a series of fatigue test was carried out for the fatigue strength evaluation of longi-web connections that are typical kinds of the load-carrying fillet weldment.

유조선 좌초 사고 시 2차사고 방지를 위한 잔류강도 평가기술 개발 (Development of an Empirical Formula for Residual Strength Assessment to Prevent Sequential Events of Grounded Oil Tankers)

  • 백승준;김상진;백점기;손정민
    • 대한조선학회논문집
    • /
    • 제56권3호
    • /
    • pp.263-272
    • /
    • 2019
  • The aim of this study is to develop a rapid calculation technique of the residual strength in order to prevent sequential events under grounding accidents. Very Large Crude-Oil Carrier (VLCC), Suezmax, and Aframax double hull oil tankers carrying large quantities of crude oil were selected for target structures. The rock geometries are chosen from the published regulation by Marine Pollution Treaty (MARPOL) of the International Maritime Organization (IMO). Oceanic rocks as the most frequently encountered obstruction with ships are applied in this work. Damage condition was predicted using ALPS/HULL program based on grounding scenario with selected parameters, i.e. depth of penetration, damage location and tanker type. The results of the scenarios are quantified to form an empirical formula which can evaluate the residual strength. The proposed formula is validated by applying a series of random grounding scenarios.

선체판부재의 최종강도에 대한 횡압력의 영향에 관한 연구 (A Study on the Lateral Pressure Effect for Ultimate Strength of Ship Platings)

  • 박주신;고재용;이준교;이경환
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.583-591
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design of ship structures, it is of crucial importance to bitter understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Finite strip analysis of a box girder simulating the hull of a ship

  • Akhras, G.;Tremblay, J.P.;Graham, T.;Cheung, M.S.;Li, W.C.
    • Structural Engineering and Mechanics
    • /
    • 제15권2호
    • /
    • pp.225-238
    • /
    • 2003
  • In the present study, the finite strip analysis of a box girder to simulate a ship's hull model is carried out to investigate its inelastic post-buckling behavior and to predict its ultimate flexural strength. Residual stresses and initial geometrical imperfections are both considered in the combined material and geometrical nonlinear analysis. The von-Mises yield criterion and the Prandtl-Reuss flow theory of plasticity are applied in modeling the elasto-plastic behavior of material. The Newton-Raphson iterative process is also employed in the analysis to achieve convergence. The numerical results agree well with the experimental data. The effects of some material and geometrical parameters on the ultimate strength of the structure are also investigated.

대파고 파랑중에서의 선체장도 해석에 관한 연주 - 선종에 따른 강도, 응답특성비교 - (A Strength Analysis of the Hull Gilder among the Rough Sea according to Ship Types)

  • 김사수;신구균;손성완;김재홍
    • 대한조선학회논문집
    • /
    • 제30권4호
    • /
    • pp.153-168
    • /
    • 1993
  • 파랑중을 항해하는 선박의 선체강도에 있어 선체에 작용하는 파랑하중을 정확히 추정하는 것은 매우 중요하다. 파랑하중 추정에 있어서 현재 널리 쓰이고 있는 선형스트립 이론은 배의 운동이 작은 낮은 파고에 의한 선체의 강체운동 응답에 기인한 파랑하중 계산법이다. 그러나, 대파고 파랑중에서 특히 슬래밍이 발생하게 되면 선체는 탄성체로서의 응답특성을 가지게 된다. 따라서 이런 경우 선체운동뿐만 아니라 탄성체 운동을 고려한 파랑하중 선체강도 해석법이 요구된다. 이미 본 연구자들은 이러한 배경으로 비선형 유체력이 선체에 작용할 때 선체변위로부터 파랑하중을 계산하여 선체강도를 평가하는 방법을 제안한 바 있다. 본 논문에서는 이러한 동적강도 해석법을 세가지 선종에 적용시켜 계통적인 수치계산을 수행하여 강체응답 및 파랑하중 특성을 비교, 고찰함으로써 파랑중 선체동적강도법의 기초자료를 제시하고자 한다.

  • PDF

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

선체 종강도에 관한 연구(I) (A Study on the Longitudinal Strength of the Ship Hull(I))

  • 고윤섭
    • 한국항해학회지
    • /
    • 제8권2호
    • /
    • pp.43-50
    • /
    • 1984
  • When the static load is applied to the ship's hull the deflection due to the bending moment from longitudinal direction has not been considered in the usual calculation of maximum bending moment. In fact, however, the deflection of ship's hull must be affected by the above-stated bending moment, and in this case the value of the maximum bending moment would be lessened in comparision with the result of usual calculation. In this paper, the author at first calculated the difference between the two values in case of rectangular barge, and suggested a practical criterion of longitudinal strength.

  • PDF

선내 항해통신장비 및 추진장비에 대한 전자파환경 연구 (A study on the Electromagnetic Environment for the Navigation Device and Propulsion Device in Ship)

  • 조형래;최기도;김종우
    • 한국ITS학회 논문지
    • /
    • 제15권1호
    • /
    • pp.87-94
    • /
    • 2016
  • 육상에서의 전자파 환경에 대한 연구는 지속적인 투자와 연구가 이루어지고 있지만 해상의 환경인 선박의 전자파 환경에 관한 시험 및 분석은 연구되어 지지 않는 실정이다. 선박은 최상층 갑판구역, 선교, 기관실로 구성되어있다. 최상층갑판구역은 안테나 및 레이더가 탑재되어 있다. 선교는 안전한 항해를 위한 항해장비가 탑재되어있다. 마지막으로 기관실에서는 선박의 추진시스템에 사용되는 배전반이 탑재되어있다. 따라서 본 연구는 선박이라는 특정 공간에서의 전자파 환경을 분석 후 해상환경에 적용 가능한 최적 기준을 제안하는 것을 목적으로 한다. 이를 위해 국내외 전자파 기준을 활용하여 실선 한국해양대학교 실습선 한바다 호를 측정 후 측정결과를 국내 기준, 이탈리아 기준과 분석하여 선박의 기관실에 대한 국내 기준 적용에 한계가 있음을 확인하였다. 본 연구의 결과는 추후 선박의 전자파 인체 보호 기준 정립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

실해역 해빙 크기에 따른 Araon호의 쇄빙성능 비교연구 (Comparative Study of Ice Breaking Performance according to Scale of Sea Ice on Ice Field)

  • 이춘주;김현수;최경식
    • 한국해양공학회지
    • /
    • 제28권1호
    • /
    • pp.28-33
    • /
    • 2014
  • The Korean icebreaking research vessel "Araon" performed four sea trials in the Arctic and Antarctic Seas. The ice properties, such as the ice thickness, floe size, ice strength, and power of the vessel were quite different in these trials. To compare the speeds of ship with the same ice strength and power, the AARC (Arker Arctic Research Center) method is used with a vessel power of 10 MW and an ice strength of 630 Pa in this paper. Based on the analysis results, the speed of the ship was 1.62 knots (0.83 m/s) with a 1.02-m ice thickness and 2.5-km floe size, 5.3 knots (2.73 m/s) with a 1.2-m ice thickness and 1.0-km floe size, and 13.8 knots (7.10 m/s) with a 1.1-m ice thickness and 200-m floe size. The analysis results showed that the ship speed and floe size have an inversely proportional relationship. Two reasonable reasons are given in this paper for the final result. One is an ice breaking phenomenon, and the other is the effect of the ice floe mass. For the breaking phenomenon, the ice breaking force is very small because the ice floe is not breaking but tearing when a ship is passing through a small ice floe. Regarding the effect of the ice floe mass, it is impossible for a ship to push and tear an ice floe if the mass of the ice floe is too large compared to the mass of the ship. The velocity of the ship decreases when the ice floe has a large mass and a large size because the ship has to break the ice floe to move forward.

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF