• 제목/요약/키워드: ship stability

검색결과 382건 처리시간 0.025초

풍압력하에서 피예항중인 손상선박의 침로안정성에 관한 연구 (A Study on Course Stability of Towed Damaged-ship under Wind Pressure)

  • 손경호;김용기;이상갑;최경식
    • 대한조선학회논문집
    • /
    • 제37권2호
    • /
    • pp.46-56
    • /
    • 2000
  • 본 논문은 손상선박의 안전대책에 관한 연구의 일환으로, 황천항행중인 선박이 충돌, 좌초 등 원인에 의해 손상을 받았을 때를 가상하고, 손상선박을 다른 안전한 장소로 예항하고자 할 때의 침로안정성 문제를 다루고 있다. 외력으로는 바람의 영향만을 고려할 때, 예선 피예선계의 침로안정성 평가를 위한 특성방정식을 도출하고, 피예선의 각 손상상태에 따른 침로안정성을 수치계산하였다. 그 결과 손상상태, 풍속, 풍향 및 예항삭의 길이 등이 침로안정성에 미치는 영향을 평가할 수 있었다.

  • PDF

선박 TRIM변화에 따른 조종성능의 분석 (The Analysis of the Ship's Maneuverability According to the Ship's Trim and Draft)

  • 박병수;강동훈;강일권;김현무
    • 수산해양교육연구
    • /
    • 제27권6호
    • /
    • pp.1865-1871
    • /
    • 2015
  • Ship's trim is the one of the most important factor for safety at the sea. Turning circle test and Z-test were carried out to find the effect of ship's trim and draft changes. The results are as follows. 1. If the ship's draft and trim became large, turning circle would be wide. 2. If the ship's draft and trim became large, ship's drift angle would be small. Small drift angle made wide turning circle. 3. Trim by the head made slow ship's final speed when turning circle test. 4. By Z-test, the deeper draft and trim by the stern made small OSA. Small OSA means strong ship's stability. 5. Totally 2nd OSA is smaller than 1st OSA on Z-test. 6. There were small differences of 2nd OSA in trim by the stern, but there were large OSA in trim by the head. 7. The larger trim by the stern, the smaller OSW. The small OSW means better ship's stability and maneuverability.

선박 복원 성능 평가를 위한 실시간 데이터 수집 및 DTW 적용에 대한 연구 (A Study for Real-time Data Collection and Application of DTW for Evaluation Ship Stability)

  • 우정훈;석호준;심승;조준래;조득재;백종화;정재룡
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 춘계학술대회
    • /
    • pp.206-207
    • /
    • 2023
  • 지능형 해상교통정보서비스는 해상교통 안전을 위한 서비스들을 제공하고 있지만, 선박들의 제원과 적재량 차이로 인해 선박 복원력 이상 판단 방법은 일반화하지 못하였다. 이번 연구에서는 선박 복원성 계산을 위한 경사계 및 GPS 데이터의 수집, 가공 방법을 정립하였다. 또한 실 해역의 기상요인을 반영하지 못하는 근사적 GM 계산에서 벗어나, 각기 선박 특성 및 외력을 반영할 수 있는 데이터 과학 알고리즘을 통해 선박 운항 상태를 실시간 판별할 수 있는 모델을 연구하였다.

  • PDF

군장신항만의 항주파로 인한 계류안정성해석 (Mooring Analysis due to Ship Wave at Gunzang New Port)

  • 김재수;공병승;홍남식
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.69-74
    • /
    • 2008
  • This study performed a numerical simulation to predict the development of ship waves and their propagation in the shallow water region of Gunzang New Port and to examine the stability of taut line mooring at the sea wall using the design criteria. In order to predict the propagation of ship waves based on the speeds of various ships under complicated and shallow water depths, a computer model was constructed based on the Boussinesque equation with a fixed coordinate system. Additionally, an investigation if the stability was made by applying MOSES under the environmental loadings estimated by OCIMF.

선박위치제어를 위한 슬라이딩모드 제어기 설계 (Design of Sliding Mode Controller for Ship Position Control)

  • ;김영복
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.869-874
    • /
    • 2011
  • This paper addresses the trajectory tracking problem for ship berthing by using sliding mode technique. With significant potential advantages: insensitivity to plant nonlinearities, parameter variations, remarkable stability and robust performance with environmental disturbances, the multivariable sliding modes controller is proposed for solving trajectory tracking of ship in harbor area. In this study, the ship position and heading angle are simultaneously tracked to guarantees that the ship follows a given path (geometric task) with desired velocities (dynamic task). The stability of the proposed control law is proved based on Lyapunov theory. The proposed approach has been simulated on a computer model of a supply vessel with good results.

선박 추진 시스템의 엔진-CPP 통합적 제어에 관한 연구 (A Study on the Engine-CPP Control of a Ship Propulsion System)

  • 김영복
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.427-432
    • /
    • 1998
  • There are many demands for ship control system and many studies have been proposed. For example, if a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved, satisfying the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption. In this context of view, this paper presents a controller design method for a ship propulsion system with CPP by Linear Matrix Inequality(LMI) which satisfies the given $H_{\infty}$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated through a simulation in the all operating ranges.

  • PDF

Research on the Safety of Ship and Offshore Structure - on Low Cycle resonance of a Sihp in Severe Following Waves -

  • Hamamoto, M.;Kim, J.A.;Kwon, S.H.;Lee, S. K.;Jo, H.J.
    • Journal of Hydrospace Technology
    • /
    • 제1권1호
    • /
    • pp.57-65
    • /
    • 1995
  • For the mechanism of ship capsizing, we can generally consider that it\`s caused due to pure loss of stability, parametric oscillation(low cycle resonance) of ship in waves and the broaching phenomena. Among them, low cycle resonance occurs due to the dynamic change of righting arm with respect to the relative position of ship to waves. The dynamic change depends on the encounter period of a ship in following waves. This paper discusses the following items : (1) An analytical expression of GZ curve varying with respect to the relative position of ship to waves, (2) Non-linear equation of motion describing low cycle resonance, (3) The effects of righting arm, stability range and encounter period on low cycle resonance.

  • PDF

여객선 세월호의 전복 요인 분석 (Analysis the factors on the capsize of passenger vessel Sewol)

  • 김정창;강일권;함상준;박치완
    • 수산해양기술연구
    • /
    • 제51권4호
    • /
    • pp.512-519
    • /
    • 2015
  • A historical tragic disaster happened by capsizing the passenger ship Sewol at South Western Sea of Korea in 16, April 2014. The ship which left Incheon harbour to bound for Jeju port passed Maengol strait and reached to approach of Byung Pung island, and then capsized and sank with a sudden inclination to the portside in the mean time of starboard the helm. In this time, the ship which has very poor stability without sufficient ballast waters and with over loading cargo listed port side caused by the centrifugal force acting to the outside of turning. A lot of cargoes not fastened moved to the port side consequently, and the ship came to beam end to capsize and sank in the end. No crews including especially captain would offer their own duties in a such extremely urgent time, as a result, enormous number of victims broke out including a lot of student. In this report, author carried out some calculation on the factors which influenced on the stability of the ship, i.e. the ship's speed, the rudder angle, the weight of cargoes and distance of movement, the surface effect of liquid in the tank. We found out that the most causes of capsize were the poor stability with heavy cargoes and insufficient amount of ballast water against the rule, and the cargoes unfastened moved one side to add the inclination as well. Above all, the owner be blamable because of the illegally operating the ship without keeping the rule.

손상된 선박의 구난 기술 및 안전 예항에 관한 연구(4) - 손상된 선박의 횡풍.횡풍중에서의 동적 안전성 - (A Study on Rescu Technique and Safe Tow of Damaged Ship(4) - Dynamic Stability of Damaged Ship in Beam Wind and Waves -)

  • 손경호;이상갑;최경식;김용기
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 제 23회 정기총회 및 추계학술발표회
    • /
    • pp.27-36
    • /
    • 1998
  • This paper presents a brief outline of dynamic stability of damaged ship in rough, beam wind and waves. The one degree-of-freedom, linear roll equation is adopted with the effects of damage fluid and external forces, but without the effect of sloshing. We evaluate the dynamic stability in terms of capizing probability based on energy balance mechanics and risk analysis , the method of which was proposed by Umeda [2] to the high speed crafts. As a result, we can predict the dynamic stability quantitatively according to sea state , operating and damage conditions.

  • PDF

손상된 선박의 구난 기술 및 안전 예항에 관한 연구(1) - 손상시의 선체 자세 및 잔존 복원성 평가법 - (A Study on Rescue Technique and Safe Tow of Damaged Ship(1) - Prediction of Final Drafts and Residual Stability of Ship in Damage -)

  • 손경호;이상갑;최경식;안영규;김윤수
    • 한국항해학회지
    • /
    • 제21권3호
    • /
    • pp.83-90
    • /
    • 1997
  • Damage stability is generally very important as a part of rescue technique of damaged ship and also in connection with the requirements of MARPOL73/78[2]. Damage stability calculation program has been developed and suggest, which can be used on an onboard computer for any operating drafts. The program is based on lost buoyancy method for calculation of final drafts, and also based on added mass method for calculation of residual righting arm. The numerical method suggested by Hamamoto-Kim[6] is adopted for calculation of intact righting arm(GZ). The model experiments on damage stability are also carried out in a small tank with tanker model 2.385 meters long. The experimental results are compared with the calculations by the suggested method.

  • PDF